
BASH scripting

1. What is Bash scripting?

A Bash script is a plain text file that contains many lines of Linux commands (e.g. echo, ls,

cp) to be performed in a batch, as opposed to entering each command line individually in

the Linux terminal. Bash scripting could be used to automate multiple or repetitive tasks

on Linux. Bash scripts are written in the Bash programming language, which has its own

syntaxes and structures, including loops, conditional constructions (if...else), and data

containers, comparable to those of other programming languages.

2. Bash script execution

A Bash script file must be created and checked for the execution permission status

before running.

Create bash script

For convenience, the name of script can follow this format.

• Avoid adding spaces in the name, use underscore instead.

• Use alphanumerical [a-zA-Z0-9]

• File name has the extension “.sh”

Create and open file “script1.sh” for editing

nano script1.sh 

The alternative way to create the empty file by using command “touch”

touch script1.sh 

1. Shebang (#!) at the first line of script is used to instruct the OS to use bash as a

command interpreter and specified the path of the interpreter.

2. The line starts with # will not be executed by interpreter. This line is referred to as

a "comment" and is useful for describing the script.

3. Line of code. This code will print Hello world on the screen.

Set the execution permission

The execute permission of the bash script file can be checked by using “ls -l” command

The current status of the execute permission of script1.sh is “denied”. To change

the execute permission, a command “chmod” , which is short for “change mode,” will be

used.

Make a script executable

chmod +x script1.sh

To run the script, just type “/path/to/file_script.sh”

./script1.sh

** “./” is indicate that the file script is located here.

3. Variables

Variables are important parts of programing. Variables store data to be use later in the

script. Bash variables are untyped meaning the interpreter will define the data type

automatically when assigning values to the variables. There are two types of bash

variables in a shell or Linux system.

3.1 System-Defined Variables

These are the variables that are automatically assigned by LINUX operating system (i.e.

built-in variables). They generally named in CAPITAL LETTER. An example list of System-

Defined Variables is shown below.

Variables Meaning Example value

BASH Return the bash path /bin/bash

BASH_VERSION Return the shell version 4.4.20(1)-release

HOME Specifies the home directory /home/kwan

PWD Specifies the current working directory /home/kwan/BASH_scripting

LOGNAME Specifies the logging user name kwan

3.2 User-Defined Variables

The variables created by user. This type of variables can be defined in either upper or

lower case, but generally in lower cases. The rules for naming user-defined bash

variables are as follows.

1) A variable name can include alphabets, digit, and underscore (_).

a. Valid names:

level, level1, _level, level_1

b. Names cannot start with digit:

1level, 1_level

2) The variable name might be in all CAPS, all lowercase, or a mixture of both..

3) The variable name is case-sensitive. For example, “Sequence” and “sequence”

are considered as two separate variables.

4) The equal sign (=) is used for assigning a value to a variable. The variable is

located on the left of equal sign while value is on the right. The whitespace

should not be added on either side of qual sign.

5) When referring to a previously defined variable, the dollar sign ($) is prefixed to

the variable's name.

4. String manipulation

Bash scripting supports various string manipulations. This lecture will show the example

of string operation Length, Substring, and Find and Replace.

4.1 String Length

There are many ways to calculate the string length.

1) A simple way to calculate the length of the string is to use # symbol.

Syntax:
$[#string_variable_name]

2) Calculate the length of the string using an “expr” command with an option

“length”.

Syntax:
expr length “$string_variable_name”

3) Use an “awk” command to calculate the length of the string

Syntax:
echo $string_variable_name | awk ‘{print length}’

Setting variables:

#!/bin/bash

name=”Kwanrutai Chininmanu”

gender=female

age=40

echo “My name is $name. My gender is $gender. I’m

$age years old.”

Output:

4.2 Substring

Bash scripting provide an option to extract a substring from a string.

Syntax:

${string:position:length}

Extract Length characters of substring from String at Position.

Bash script: stringLen.sh

#!/bin/bash

str=”My name is Kwanrutai”

##Syntax 1

length1=${#str}

echo "Syntax 1: Length of '$str' is $length1"

##Syntax 2

length2=$(expr length "$str")

echo "Syntax 2: Length of '$str' is $length2"

##Syntax 3

length3=$(echo $str | awk '{print length}')

echo "Syntax 3: Length of '$str' is $length3"

Output:

Example 1: Extract substring from start until specific length

Example 2: Extract substring from specific character onwards

Extract first 10 characters of string (position = 0, length = 10)

#!/bin/bash

str=”My name is Kwanrutai”

substr=”${str:0:10}”

echo "Full string: $str"

echo "Substring: $substr"

Output:

Extract substring 11th character onwards (position = 11, length = end of string)

#!/bin/bash

str=”My name is Kwanrutai”

substr=”${str:11}”

echo "Full string: $str"

echo "Substring: $substr"

Output:

Example 3: Delete the first 3 characters and then print 12 subsequent characters

Example 4: Extract a specific number of characters counting from the end of the string

Extract substring at the middle of string (position = 3, length = 12)

#!/bin/bash

str=”My name is Kwanrutai”

substr=”${str:3:12}”

echo "Full string: $str"

echo "Substring: $substr"

Output:

Extract last 9 character (position = -9, length = end of string)

#!/bin/bash

str=”My name is Kwanrutai”

substr=”${str:(-9)}”

echo "Full string: $str"

echo "Substring: $substr"

Output:

4.3 Shortest (non-greedy) substring match

The syntax for deleting the shortest match of the substring from the string

Syntax: Delete matched substring from the beginning of string

${string#substring}

Syntax: Delete matched substring from the end of string

${string%substring}

4.4 Longest (greedy) substring match

The syntax for deleting the longest match of substring from string

Syntax: Delete match substring from the beginning of string

${string##substring}

Syntax: Delete match substring from the end of string

${string%%substring}

Delete matched substring from full string

#!/bin/bash

filename=”p1.1.fastq.gz”

begin=${filename#*.} #Delete from the beginning

end=${filename%.*} #Delete from the end

echo “Shortest match from the beginning: $begin”

echo “Shortest match from the end: $end”

Output:

4.5 Find and replace

1) Replace only the first match

Find the pattern in string and replace only the first match by

replacement.

Syntax:

${string/pattern/replacement}

Delete matched substring from full string

#!/bin/bash

filename=”p1.1.fastq.gz”

begin=${filename##*.} #Delete from the beginning

end=${filename%%.*} #Delete from the end

echo “Longest match from the beginning: $begin”

echo “Longest match from the end: $end”

Output:

2) Replace all the matches

Find the pattern in string and replace all matches by replacement.

Syntax:

${string//pattern/replacement}

Replace only the first match

#!/bin/bash

filename=”p1_1.fastq.gz”

replacement=${filename/_*.gz/.paired.fastq}

echo “After replacement: $replacement”

Output:

Replace all matches

#!/bin/bash

filename="Path of the bash is /bin/bash"

replacement=${filename//bash/sh}

echo “After replacement: $replacement”

Output:

3) Replace at the beginning or the end

Find the pattern in string and replace only first match by

replacement.

Syntax: Replace matched pattern with the replacement from the

beginning of the string

${string/#pattern/replacement}

Syntax: Replace matched pattern with the replacement from the end

of the string

${string/%pattern/replacement}

Delete matched substring from full string

#!/bin/bash

filename=”p1_1.fastq.gz”

begin=${filename/#*_/p2_} #Replace from the beginning

end=${filename/%.*/.paired.bam} #Replace from the end

echo “Replace at the beginning: $begin”

echo “Replace at the end: $end”

Output:

5. Arrays

An array is a data container comprised of two parts including keys and values.

5.1 Create indexed or associative arrays using declare command

Syntax:

1) Bash indexed array: the keys of array are ordered integers.

declare -a array_name

array_name=(value1 value2)

2) Bash associative array: the keys of array are strings.

declare -A array_name

array_name=(["key1"]="value1" ["key2"]="value2")

5.2 Access values of an array

1) Access all data in the array
${array_name[@]}

2) Show all index of the array
${!array_name[@]}

3) Access to the data of the index n of the array
${array_name[n]}

4) Show the length of the array
${#array_name[@]}

5) Remove both index and data at the index n
unset array_name[n]

6) Add new data to the array at the index n
array_name[n]=”new_value”

Accessing data in the array

#!/bin/bash

wkday=(Monday Tuesday Wednesday Thursday Friday)

echo ${wkday[@]}

echo ${wkday[0]}

for i in ${wkday[@]}

do

 echo $i

done

for index in ${!wkday[@]}

do

 echo “Day $index = ${wkday[index]}“

done

Output:

6. Arithmetic operators

Arithmetic operator is a mathematical function that used to perform an arithmetic

operation. The following 11 arithmetic operators are supported by bash.

Operator Name Description Example

+ Addition It adds two operands x=$((10+3))

Result: x = 13

- Subtraction It subtracts the second operand
from the first one

x=$((10-3))

Result: x = 7

* Multiplication Multiply two operands x=$((10*3))

Result: x = 30

/ Division Divide first operand from second
operands and return quotient

x=$((10/3))

Result: x = 3

** Exponentiation The second operand raised to
the power of the first operand.

x=$((10**3))

Result: x = 1000

% Modulo Divide the first operand from the
second operand and return the
remainder

x=$((10%3))

Result: x = 1

+= Increment by constant Increment value of the first
operand with a given constant
value

x=10
((x+=3))
Result: x=13

-= Decrement by
constant

Decrement value of the first
operand with a given constant
value

x=10
((x-=3))
Result: x=7

*= Multiply by constant Multiply value of the first
operand with a given constant
value

x=10
((x*=3))
Result: x=30

/= Divide by constant Divide value of the first operand
with a given constant value and
return the quotient

x=10
((x/=3))
Result: x=3

%= Remainder by dividing
with constant

Divide value of the first operand
with a given constant value and
return the remainder

x=10
((x%=3))
Result: x=1

Double parentheses can be used to specify arithmetic operation in Bash.

Syntax:
((expression))

7. Script Input (STDIN)

7.1 Command line arguments

The arguments are input that necessary for processing the script. The command

line arguments are passed in a positional way.

Syntax:

./bash_script.sh arg1 arg2 arg3..

where arg1 = $1 arg2 = $2 arg3 = $3

Perform arithmetic operations by Double parentheses

#!/bin/bash

echo "10 + 3 = " $((10+3))

echo "10 - 3 = " $((10-3))

echo "10 * 3 = " $((10*3))

echo "10 / 3 = " $((10/3))

a=$((10%3))

echo "10 % 3 = $a”

x=10

echo "x = $x"

echo "x%=3 then x = " $((x%=3))

b=$((x/=3))

echo "x/=3 then x = $b"

Output:

Special variable Detail

$0 Name of bash script

$1 … $n Positional argument indicated from 1 to n.

$@ All arguments that are passed in to the script

$# The total number of arguments passed to script

$? The exit status of the most recently run process

$$ The process ID of the current script

7.2 Read command

A read command is built-in command that takes the user input into a variable.

Syntax:

read OPTIONS ARGUMENT

Try read command

1). Save the user input into a specified variable

read input

echo $input

2).Split the user input into different variables by adding multiple argument

read var1 var2

echo var1

echo var2

3). Piping: pipe a standard output from one command and pass it as an input for the other

command

echo Kwanrutai Mairiang | (read var1 var2; echo “$var1 $var2”)

8. Condition statement

A condition statement is used for decision making in any programing language. Bash

scripting also use this statement for making some decisions in an automated task.

Comparison operators

Operator Syntax Description

-eq INTEGER1 -eq INTEGER2 Return true if two numbers are equal

-ne INTEGER1 -ne INTEGER2 Return true if two numbers are not equal

-lt INTEGER1 -lt INTEGER2 Return true if integer1 less than integer2

-gt INTEGER1 -gt INTEGER2 Return true if integer1 greater than integer2

== STRING1 == STRING2 Return true if STRING1 is equal to STRING2

!= STRING1 != STRING2 Return true if STRING1 is not equal to STRING2

! ! EXPRESSION Return true if the expression is false

-d -d FILE Check the existence of a directory

-e -e FILE Check the existence of a file

-r -r FILE Check the existence of a file and read permission

-w -w FILE Check the existence of a file and write permission

-x -x FILE Check the existence of a file and execute

permission

8.1 If statement

The basic if statement contains one level of condition and action. The syntax

consisting of if follow by EXPRESSION in square brackets. If the EXPRESSION

is true, then ACTION will be performed. The statement ends with fi. One if

statement can contain one (single condition) or more expressions (multiple

conditions).

1) Single condition

Syntax:
if [EXPRESSION]; then

ACTION

fi

The following example show the basic “if statement” with single condition.

2) Multiple conditions

Multiple conditions in “if statement” need BOOLEAN operator for joining

between conditions.

Operator Symbol Description

AND && Return TRUE when both Expression_1 and Expression_2

are TRUE

OR || Return TRUE when one of Expression_1 or Expression_2

is TRUE

Syntax:

AND operator

if [EXPRESSION_1] && [EXPRESSION_2]; then

ACTION

fi

Check if input number is less than 100

#!/bin/bash

#Get input number from user input

echo "Enter a number"

read n

#Check if input number less than 100

if [$n -lt 100]; then

echo "$n is less than 100"

fi

Output:

OR operator

if [EXPRESSION_1] || [EXPRESSION_2]; then

ACTION

fi

The following example shows the basic “if statement” with multiple

conditions.

8.2 If-else statement

This pattern of conditional statement is used to execute one action with a true

condition and the other action with a false condition.

Syntax:
if [EXPRESSION]; then

ACTION_1

else

ACTION_2

fi

Check if input number is between 1 and 10

#!/bin/bash

#Get input number from user input

echo "Enter a number"

read n

#Check if input number is greater than 1 and less

than 10

if [$n -gt 1] && [$n -lt 10]; then

echo "$n is number between 1 and 10 "

fi

Output:

Check if input name is already in “users” array

#!/bin/bash

declare -A users

users=(["Harry"]="Harry Potter"

["Hermione"]="Hermione Granger"

["Ron"]="Ron Weasley"

["Kwanrutai"]="Kwanrutai Mairiang")

echo "Please enter your name"

read name

if [[-n "${users[$name]}"]]; then

 printf '%s is already registered\n' "${users[$name]}"

else

 echo "Please register for the meeting"

fi

Output:

1. Input: Kwanrutai

2. Input: Albus

8.3 If..elif..else statement (if-else in ladder)

This pattern of conditional statement is used for a series of conditions. The set of

ACTION in if statement is executed, when the EXPRESSION is TRUE. If there is

no TRUE EXPRESSION, the ACTION in else statement will be executed.

Syntax:

if [EXPRESSION_1]; then

ACTION_1

elif [EXPRESSION_2]; then

ACTION_2

…

else
ACTION_3

Fi

Check grade using the input score

#!/bin/bash

echo "Enter the mark"

read mark

if (($mark >= 85)); then

echo "Grade - A"

elif (($mark < 85 && $mark >= 75)); then

echo "Grade - B"

elif (($mark < 75 && $mark >= 65)); then

echo "Grade - C"

elif (($mark < 65 && $mark >= 55)); then

echo "Grade - D"

else

echo "Grade - F"

fi

Output:

8.4 Nested if statement

This pattern of conditional statement is used when one condition is true, then the

next condition is checked. Two example syntax are shown below.

Syntax:

1) In syntax 1, if the EXPRESSION_1 is true, then another expression,

EXPRESSION_2 is checked. If EXPRESSION_2 also true, ACTION will be

executed.

if [EXPRESSION_1]; then

 if [EXPRESSION_2]; then

ACTION

fi

fi

2) In syntax 2, if EXPRESSION_1 is true, then the ACTION_1 will be

performed. But, if EXPRESSION_1 is false, the EXPRESSION_2 in else

will be checked. If EXPRESSION_2 is true, the ACTION_2 will be executed.

if [EXPRESSION_1]; then

ACTION_1

else

 if [EXPRESSION_2]; then

ACTION_2

fi

fi

1

2

Check if input number is between 1 and 10 using nested if condition

#!/bin/bash

#Get input number from user input

echo "Enter a number"

read n

#Check if input number is greater than 1 and less

than 10

if [$n -gt 1]; then

 if [$n -lt 10]; then

 echo "$n is number between 1 and 10"

 fi

fi

Output:

Check if input name is already in “users” array

#!/bin/bash

declare -A users

users=(["Harry"]="Harry Potter"

["Hermione"]="Hermione Granger"

["Ron"]="Ron Weasley"

["Kwanrutai"]="Kwanrutai Mairiang")

echo "Please enter your name"

read name

if [[-n "${users[$name]}"]]; then

 echo "Is '${users[$name]}' your Name-Surname? (y/n)"

 read check

 if [$check == y]; then

 printf '%s is already registered\n' "${users[$name]}"

 else

 echo "Please register for the meeting"

 fi

else

 echo "Please register for the meeting"

fi

Output:

Input: Kwanrutai

9. For loop

For loop is used for iterating item in the list of items. An item from each round is

assigned to the variable which is then used to perform any action in loop. The syntax of

“For loop “consisting of LIST of data and variable (ITEM). For loop starts with do and

ends with done.

Syntax:

for ITEM in [LIST]

do

 ACTION

done

The list of items can be a series of strings separated by spaces, a range of numbers,

output of a command, an array.

9.1 Loop over a series of strings

For loop over series of string: Sunday … Saturday

#!/bin/bash

count=0

for day in Sunday Monday Tuesday Wednesday Thursday Friday Saturday

do

 count+=1

 echo “Day $count = $day“

done

Output:

9.2 Loop over a number range

1) Loop over the specified range, {START..END}, of numbers.

2) Loop over the specified range with increment, {START..END..INCREMENT}

For loop over specified range of number 1 to 5

#!/bin/bash

for i in {1..5}

do

 echo “Number: $i“

done

Output:

For loop over specified range of number 0 to 10 with increment 2

#!/bin/bash

for i in {0..10..2}

do

 echo “Number: $i“

done

Output:

9.3 Loop over array elements

Use for loop for iterating item in array.

9.4 Loop over output of a command

 The following example showing how to iterate filename with specific extension in

current folder.

For loop over item in array

#!/bin/bash

users=("Harry Potter" "Hermione Granger" “Ron Weasley"

"Kwanrutai Mairiang")

for name in “${users[@]}”

do

 echo “Name: $name”

done

Output:

For loop over the list of files with extension “.gz”

#!/bin/bash

for file in *.gz

do

 echo $file

done

Output:

10. While loop

Another type of loop is while loop. While loop will iterate while the specified condition is

true. While loop is useful when exact times for looping is not known. The syntax of

“While” loop contains CONDITION that made the loop keep iterate. Then, UPGRADE

CONDITION until condition becomes false for stopping the iteration.

Syntax:

while [CONDITION]

do

 ACTION

 UPGRADE_CONDITION Ex.((number ++))

Done

Loop and print out the number from 1 to 5

#!/bin/bash

count=1

while [$count -le 5]

do

 echo “Number: $count”

 ((count++))

done

Output:

Reading file using while loop

Read data or file from standard input

#!/bin/bash

while read line

do

 echo $line #Print out each line in file or input data

done < “${1:-/dev/stdin}” #Get filename or data from standard input

Output:

Pipe 4 lines of data from “dv1_primer.txt” to Bash script

Bash scripting practical

1. Write a script to read a tab delimited file containing primer names and sequences.

Primer sequences contain 8nt-index at position 1 to 8. Remove the 8nt-index from

primer sequences and print out both primer names and edited sequences in FASTA

format.

a. Input: dv1_primer.txt

2. Write a script to read a genome sequence from a FASTA file. Split the genome

sequence into each gene using the following gene positions. Pipe all gene sequences

in a FASTA format to an output file.

a. Input: reference.fasta

b. Output: dv1_gene.fasta

c. Gene position

Gene Start End

capsid 95 436

prM 437 934

envelope 935 2419

ns1 2420 3475

ns2a 3476 4129

ns2b 4130 4519

ns3 4520 6376

ns4a 6377 6826

ns4b 6827 7573

ns5 7574 10270

Group practical

1. Create a folder ‘p1’ , and then move files ‘p1_1.fastq.gz’ and ‘p1_2. fastq.gz’ into the

newly created folder.

2. Write a script “run_analysis.sh“ to build an automated pipeline to run the

following processes:

1) Run “Trimmometic” program to trim low quality base

a. Input: p1_1.fastq.gz, p1_2. fastq.gz in the p1 folder

b. Trimming parameter:

i. Length >= 40

ii. Score >= 20

c. Trimmometic command:

java -jar /path/to/trimmomatic/trimmomatic-0.39.jar PE -phred33

p1/p1_1.fastq.gz p1/p1_2.fastq.gz p1/p1_1.trim.fastq.gz

p1/p1_1.unpair.fastq.gz p1/p1_2.trim.fastq.gz p1/p1_2.unpair.fastq.gz

LEADING:20 TRAILING:20 SLIDINGWINDOW:5:20 MINLEN:40

2) Align trimmed sequences to a reference genome using minimap2

a. Reference file: reference.fasta

b. Minimap2 command:

3) Convert a SAM file (from step2) to a BAM file, then sort BAM file and filter only

paired mapped

a. Samtools command

i. SAM to BAM:

ii. Sort BAM:

iii. Filter paired mapped

4) Run samtools flagstat

a. Flagstat command:

/path/to/minimap2/minimap2 -ax sr -o p1/p1.sam

reference.fasta p1/p1_1.trim.fastq.gz p1/p1_2.trim.fastq.gz

samtools view -Shb -o p1/p1.bam p1/p1.sam

samtools sort -o p1/p1.sorted.bam p1/p1.bam

samtools view -hb -f 2 -o p1/p1.sorted.pair.bam

p1/p1.sorted.bam

samtools flagstat p1/p1.sorted.pair.bam

