
Bash scripting practical

1. Write a script to read a tab delimited file containing primer names and

sequences. The primer sequences contain eight nucleotide index (8nt-

index) at position 1 to 8. Remove the 8nt-index from each primer sequence

and print out both primer names and edited sequences in FASTA format.

a. Input: dv1_primer.txt

Script file: practical1.sh

Run the script file:

CODE DESCRIPTION:

#!/bin/bash

while read line || [-n "$line"]; #Use while loop to

read the input file. This while loop will keep going until the

end of the file OR until the "$line" variable is not empty.

This will make sure that the file's last line is read by the

while loop.

do

line_array=($line) # Keep data from each line in an

array

name=${line_array[0]} #The first index of array is

primer name. Assign primer name to variable “name”.

seq=${line_array[1]} #The second index of array is

primer sequence. Assign primer sequence to variable “seq”

$./ practical1.sh dv1_primer.txt

echo -e ">$name \n${seq:8}" # Print the name and

sequence on the screen in fasta format. Use the substring

function to get the primer sequence from position 9 to the end.

The "-e" option will tell the echo command to recognize "\n".

done < $1 # Get a primer file from command line arguments.

2. Write a script to read a genome sequence from a FASTA file. Split the

genome sequence into each gene using the table of gene positions below

(c). Pipe all gene sequences in a FASTA format to an output file.

a. Input: reference.fasta

b. Output: dv1_gene.fasta

c. Gene position

Gene Start End

capsid 95 436

prM 437 934
envelope 935 2419

ns1 2420 3475
ns2a 3476 4129

ns2b 4130 4519

ns3 4520 6376
ns4a 6377 6826

ns4b 6827 7573
ns5 7574 10270

!!First, copy the position of the gene to a text file “gene.txt”.

Script file: practical2.sh

How to run the script file:

CODE DESCRIPTION:

#!/bin/bash

ref_file=$1 # The first command line argument is the file

"reference.fa”. Assign the reference file to the variable

"ref_file".

$./ practical2.sh reference.fasta gene.txt > dv1_gene.fasta

gene_file=$2 # The second argument on the command line is

the position of the gene in a text file. Assign the text file

of gene positions to the variable "gene file."

ref=$(grep -v ">" $ref_file | tr -d "\n") # Read the

genome sequence from a file and store it in the "ref" variable.

"grep -v" is used to find lines that don't have ">" in them.

Then, pass sequence line to "tr -d" to get rid of the newline.

while read line || [-n "$line"]; #Use while loop to

read the input file. This while loop will keep going until the

end of the file OR until the "$line" variable is not empty.

This will make sure that the file's last line is read by the

while loop.

Do

line=$(echo $line | tr -d "\r") # Use tr -d to get

rid of the “\r”.

line_array=($line) # Keep data from each line in an

array

gene=${line_array[0]} #The first index of array is gene

name. Assign gene name to variable “gene”.

start=${line_array[1]} #The second index of array is

start position. Assign start position to variable “start”.

end=${line_array[2]} #The third index of array is end

position. Assign end position to variable “end”.

position=$((start-1)) # The substring function will

take the substring after the given position. So, the position

of the substring should be one position after the start

position.

length=$((end-start+1)) # Calculate length of gene

###let length=(end-start)+1 #You can also use let

command to calculate length.

gene_seq=${ref:position:length} # Using calculated

position and length with the substring function to get the gene

sequence.

echo -e ">$gene \n$gene_seq" # Print the gene name and

gene sequence on the screen in FASTA format.

done < $gene_file Get a gene position file from command line

arguments

Use ">" to pass data to a text file so that the result of

printing can be kept in a file.

./practical2.sh reference.fasta gene.txt >

dv1_gene.fasta

Group practical

1. Create a folder ‘p1’ , and then move files ‘p1_1.fastq.gz’ and ‘p1_2.

fastq.gz’ into the newly created folder.

Script file: movefile.sh

How to run the script file:

CODE DESCRIPTION:

#!/bin/bash

for file in *.gz # Looping over the names of files that end

in ".gz."

do

fd=${file%%_*} # Use substring to get rid of anything

after the underscore from the file name.

Before making a new directory and moving files, check

if [-d $fd]; then # Check if the directory exists.

 # If yes

if [-e $file]; then # Check to see if the file

you want to move is ready to be moved.

echo "Moving file $file to folder $PWD/$fd/"

$./movefile.sh

!!This script needs to be run in the same folder as the

“fastq.gz” files.

mv $file "$PWD/$fd/" # Move the file to the newly

created folder

fi

 # If No

else

mkdir "$PWD/$fd" # Make a new folder.

echo "Moving file $file to folder $PWD/$fd/"

mv $file "$PWD/$fd/" # Move the file to a newly created

folder

fi

done

2. Write a script “run_analysis.sh“ to build an automated pipeline to

run the following processes:

1) Run “Trimmometic” program to trim low quality bases

a. Input: p1_1.fastq.gz, p1_2. fastq.gz in the p1 folder

2) Align trimmed sequences to a reference genome using minimap2

3) Convert a SAM file (from step2) to a BAM file, then sort BAM file and

filter only paired mapped

4) Run samtools flagstat

Script file: run_analysis.sh

How to run the script file:

CODE DESCRIPTION:

#!/bin/bash

fd=$1 # The script needs two inputs: the name of the folder in

argument 1 and the name of the sequence file in argument 2.

ref_file=$2

files=($(ls $fd/*.gz)) # Use the "ls" command to list all

files that end in ".gz" in the input folder and keep the file

names in the "files" array.

$./run_analysis.sh p1 reference.fasta

!! The folder p1 contains the files p1_1.fastq.gz and

p1_2.fastq.gz.

file1=${files[0]} # Assign first file in variable “file1”

file2=${files[1]} # Assign second file in variable “file2”

1. Run Trimmometic ##

echo "1. Run Trimmometic: $fd"

Prepare the name of the output file before you run

Trimmometic. For each input file, Trimmometic will return two

output files.

Therefore, four output files will be created. A trim file has

reads that pass the quality control for both pairs. If only one

read of a pair passes the QC, it will be saved in an unpair

file.

String manipulation used here if Find the ".fastq.gz" part and

replace it with the name you want.

f1_trim=${file1/.fastq.gz/.trim.fastq.gz}

f2_trim=${file2/.fastq.gz/.trim.fastq.gz}

f1_unpair=${file1/.fastq.gz/.unpair.fastq.gz}

f2_unpair=${file2/.fastq.gz/.unpair.fastq.gz}

Place the file name variable in the Trimmometic command.

trim_cmd="trimmomatic PE -phred33 $file1 $file2

$f1_trim $f1_unpair $f2_trim $f2_unpair LEADING:20

TRAILING:20 SLIDINGWINDOW:5:20 MINLEN:40"

Show the input file and the output file of this step on the

screen.

echo "Input files: $file1 $file2"

echo -e "Output files: \n$f1_trim \n$f2_trim

\n$f1_unpair \n$f2_unpair"

##----Run trimmometic command

$trim_cmd # Run the trimmometic command

echo -e "\n\n"

2. Run Minimap2

echo "2. Run Minimap2: $fd" # Second step, run alignment

with Minimap2

out_sam=${file1/_*.fastq.gz/.sam} # Prepare the name of

the output file

map_cmd="minimap2 -ax sr -o $out_sam $ref_file

$f1_trim $f2_trim" # Put variables to minimap2 command.

Show the input file and the output file of this step on the

screen.

echo -e "Input files: \n$f1_trim \n$f2_trim"

echo -e "Output files: \n$out_sam"

##----Run minimap2 command

$map_cmd # Run the Minimap2 command

echo -e "\n\n"

3. Run samtools

echo "3. Run samtools: $fd" # Third step, run samtools

echo "-----Convert SAM to BAM---------" # Convert the

output file from minimap2 from SAM to BAM.

out_bam=${file1/_*.fastq.gz/.bam} # Prepare the name of

the output file

Show the input file and the output file of this step on the

screen.

echo "Input files: $out_sam"

echo "Output files: $out_bam"

bam_cmd="samtools view -Shb -o $out_bam $out_sam" # Put

variables to samtools view command.

##---Run command: Convert SAM to BAM

$bam_cmd # Run the Samtools view command

echo -e "\n"

echo "-----Sort BAM file-------" # Then, sort the BAM file

sorted_bam=${file1/_*.fastq.gz/.sorted.bam} # Prepare

the name of the output file

Show the input file and the output file of this step on the

screen.

echo "Input files: $out_bam"

echo "Output files: $sorted_bam"

sort_cmd="samtools sort -@ 2 -o $sorted_bam $out_bam"

Put variables to samtools sort command.

##---Run command: Sort BAM file

$sort_cmd # Run the Samtools sort command

echo -e "\n"

echo "-----Filter paired mapped-------" # Filter only

read that mapped pairs from the sorted BAM file.

pair_bam=${file1/_*.fastq.gz/.sorted.pair.bam} #

Prepare the name of the output file

Show the input file and the output file of this step on the

screen.

echo "Input files: $sorted_bam"

echo "Output files: $pair_bam"

pair_cmd="samtools view -hb -f 2 -o $pair_bam

$sorted_bam" # Put variables to samtools view command.

##-----Run filter paired mapped

$pair_cmd # Run the Samtools view command

echo -e "\n\n"

4. Run Flagstat

echo "4. Run Flagstat: $fd" # Run FLAGSTAT to see a summary

of the results of the alignment.

Show the input file of this step on the screen.

echo "Input files: $pair_bam"

flag_cmd="samtools flagstat $pair_bam" # Put variables to

flagstat command.

##-----Run FLAGSTAT

$flag_cmd # Run the flagstat command

!!Here is the easiest way to create the automated pipeline. To make the pipeline

better, each step should have a checkpoint for running errors. I hope this

practical gives you some ideas to use bash scripting for your work.

