Introduction to BASH
scripting

>

Josefina Campos (jocamposO05@gmail.com)
Sol Haim (solhaim@gmail.com)
Tomas Poklepovich (tcaride@gmail.com)
Andrés Culasso (aculasso@gmail.com)

* BASH

What 1s BASH?

stands for Bourne-Again Shell

- Bourne Shell was an improvement of

Thom

- GNU/
of UN

nson shell that was the default in UNIX
_InuxX was created as a freeware version

X, so It has to have a replacement

(compatiblility) for the shell —~ BASH

What Is a shell?

 Kernel is the software that
Interact with hardware
(CPU/GPU, memory, I/O,
etc.)

* The user interact with the
system mostly through the
Shell and Applications.

- As an example: the user tell
the shell that he/she wants to
run some program/application.

* There are both graphical
and text based shells.

* The script is a program.

— A program is a set of orders required to do a more or less complex task. You can think in it as a recipe

or an experiment protocol.

* All scripts are programs, but no all programs are scripts.

* Scripts allows the automation of repetitive tasks and the creation of pipelines.
* However some tasks require user interaction or checks and thus it cannot be easily

“scripted”.

Read
FASTO
Files with
Reads 1

Gets paths

Read
FASTO
Files with
Reads 2

Gets paths

of files:

,-’IéastDC

Cuality |
d

Filter Reads by

CASAVA Header

Filters FASTQ reads

from Read FASTO
Files with Reads 1

(61 Cut Adapter Trim Reads by Quality

P S——
Remowves adapter Trim input sequence Cut
sequences from Adapter from the end,

Filter Reads by using the quality
CASAVA Header. threshald.

Filters FASTQ reads

from Read FASTO
Files with Reads 2

Filter Reads by ||
CASAVA Header '

i Cut Adapter Trim Reads by Quality -
Remowves adapter Trim input sequence Cut)
sequences from Adapter from the end, T
Filter Reads by using the quality
CASAWA Header. threshald.

3 I,’fr astipC

Control

Filter Merged BAM L

File with SAMtools 4

e
SAMTools view.

I]
1

-

e [T o
Filter BAM/SAM files %
from Merge Files with (T —

What Is a script?

ast{JC. A
ality |

=

ntral.

Map Reads with
BWA-MEM

Aligns upstream
oriented reads from

A Trim Reads by

Quality and

downstream
oriented reads from
Trim Reads by

-

g ot

Quality |
Control,/

!

.

l ol il onvert |

] BAM |
v y
& | oM | glemove Cleanea aan e Setac,
e _'”ﬂl_b”‘:“.]c' ' M Eile/® by

4 \ y i

BASH Script file

Shebang: states the

f hich th ' .
/ \[I)Vraosgi'smteonrfvg/r ich the script o Command Interpreters
#'/b /b Hash: the line is a comment. (aS BASH) read the
- df ' - .
H/bin/bash i scripts from a simple
text file.

My first script

e Some text editors

I | . .
echo "Hello World! - could highlight known
 helo worisi mhesereen | cOmMMands.

* To be executed the text
GNU nano 4.8 file require execution
permission.

Just to remember... file
permissions

Permission for owner

—
_—

* Read: the user I
can see what is $ chmod 755 file.sh

inside the file / / [
e Write: the user Permission for group // 0 0 0
can change (or /
delete thegfllé) Permission for others | 1 O O
2 0 1
e Execute: the .
user can $ chmod +x file.sh 3 0 1
execute the file 4 1 0
or cd into the ? 5 1 0
directory $¢ chmod -r file.sh = ||

Hands-on contents

* Variable setting and string manipulation
* Definition and use

* Concatenation Other options available at man bash and:
https://tidp.org/LDP/abs/html/string-manipulation.html

* Sub-strings by position
* Sub-strings by match
* Condition statement (flow control)
* Single condition
* Multiple conditions (Boolean operators)
* Loops
* For loop

https://tldp.org/LDP/abs/html/string-manipulation.html

Variables

* The variables allows you to assign a name to a value
that can be referred later in the script. Also, it allows you
to pass information to a script so you don’t have to edit it
to change target file names or options

* The variable name can include any letter or number or _

* They are CASE SENSITIVE so myvar and MyVar are
different variables.

* The values are assigned with “=" sign

* After assignation they are accessed by using a $ before
the name

VariableScript.sh example

* Variable definition (without
“$"), no spaces after nor
ing variable before the = sing.

#'!/bin/bash

My script

myname=51 » « Another variable that refers
echo "Hello $myname" to the first command line

\ argument ($1)
e Variable referred in a

command (with “$")

[+1 manager@COGTrain22: ~/course_data Q

S ./variableScript.sh Johann

s]

Hello Johann

HelloToYou.sh example

_ o #!/bin/bash
e Strings can be joined

(concatenated) just by a="Johann"
referring one after other.

b="MaStrOpier0"
* Note that the space within
. . =1 bll
$a and $b is also included Lo RS

in $c echo "Hello $c"

[+1 manager@COGTrain22: ~/course_data/BASH_scripting Q

S ./HelloToYou.sh

S []

Hello Johann Mastropiero

Substring.sh example

#!/bin/bash + The length of the string can be retrieved
filename="5RR19504912 1.fq" v with ${#var} (where “var” is the variable

name)
Print string length _ _
echo ${#filename} A string can be truncated an arbitrary

number of characters from the beginning

. (left to right) with ${var:L} (where “var” is
Dflet? Tirst _ 3 CWV the variable name, and “L” is the length of
beg=${f1ilename:3} the truncated string)
echo $beg
* A part of a string can be retrieved using $
Delete first 3 chars and {var:S:L} (where “var is the variable
print 7 chars name, “S” the start position and “L” the
mid=${filename:3:7} — length of the substring)
echo $mid * Finally a string can be truncated counting
_ ~, fromthe last character (right to left) with $
Print last 5 chars {var: -L} (where “var” is the variable
end=${filename: -5} name, and “L” the length of the substring:

echo $end beware of the space between “:” and “-")

GetPairName.sh example

* A substring can be #!/bin/bash
deleted by it match from |
left to right with filenamel="SRR19504912 1.fq"

${var#substring} filename2=%${filenamel%s 1.fq} 2.fq

* Conversely, a substring
can be eleted by it match

from right to left with samplel=sample${filenamel#SRR}
${var%substring}

echo $filename?2

_ echo $samplel
 |In both cases “var” is the

variable name and
“substring” is the text to |
match. Substring may R lab e N g
contain a wilcard “*” to |
mach any text

[+1 manager@COGTrain22: ~/course_data/BASH_scripting Q =

S ./GetPairName.sh

s []

Breakout rooms #1

Exercise 1. Write a SecondScript.sh that lists (Is) the files in your directory

Exercise 2: Write a CountScript.sh that counts the lines (wc —l) in the file SRR19504912 1.fastq
present in /lhome/manager/course_data/NGS file formats _and QC

Exercise 3. Modify your SecondScript.sh so that it lists the files in any specified directory as the
input to the script.

The command line execution would look like:

SecondScript.sh /path/to/a/directory

Exercise 4. Modify your CountScript.sh so that it counts the lines in any specified file that is the
input to the script.

The command line execution would look like:

CountScript.sh /path/to/a/file

Exercise 5: Modify the HelloToYou.sh script so that it takes two arguments (your first name as $1
and surname as $2) from the command line.

Command line execution would be:

HelloToYou.sh Johann Mastropiero

Exercise 6. Modify your CountScript.sh file so that it takes the pair of fles SRR19504912 1.fastq
and SRR19504912 2.fastq (/home/manager/course_data/NGS file_formats_and QC) as input and
outputs the number of lines in each file.

Exercise 7: Modify the GetPairName.sh script so the user can provide any file name as input to the
script.

Condition statement: If

* Allows to execute part of the script if a certain condition

IS met. The condition is a Boolean expression (or zero
for false and non-zero for true). Complex expressions

could be created with Boolean operators as “OR”, “AND”

and “NOT” (|7, “&&”, “I” respectively)

if [EXPRESSION]; then
ACTION
fi

if [EXPRESSION 1] && [EXPRESSION 2]; then
ACTION
fi

if [EXPRESSION 1] || [EXPRESSION 2]; then
ACTION
fi

True

e

False

|

Hamlet in a script:

[2b]]|['2b]

Condition statement: if-else

* Works basically as if statement, but allows to execute
a different part of the script when the original condition

IS not met.
if [EXPRESSION];then i:
ACTION 1 True False

else

ACTION 2
fi \

* Action_1 will be executed if EXPRESSION is true, but
Action_2 will be executed if EXPRESSION is false

* Off course, the expression could be more complex
with the use of AND, OR and NOT operators.

[fStatement.sh example

* Assigns to variable n

#1/bin/bash /// whatever the users
o writes

#Get input number from user input « Uses the numeric test

echo "Enter a number” — ¥ operator less than (-It)

read n - other operators are gt,

eq,le and ge for greater

#Check if in number less than 100

if [$n -1t 100]: then than, equals to, less or

echo "$n is less than 100" equals to and greater or
fi \ equals to respectively.
* The output text is only

[+ manager@COGTrain22: ~/course_data ertten to the termlnal If
b sl : S ./IfStatement.sh the user enters a
75 number lower than 100

$./IfStatement.sh

75 is less than 100

Enter a number
150

s i

CheckFile.sh example

#!/bin/bash

Set the path for our file

file="reference.fasta"

Check whether file exists, 1s readable and has data

if [[-e ${file}]] && [[-r ${file}]] && [[-s ${file}]];then
#/ Execute this code if file meets those conditions
echo "File is good" —

° Te$t8 o — ////
— -e checks if the file exists ~——— Toseeacomplete list of
S available tests, use man test
- -r'thecks if the file is redeable or help test commands.

- _s*checks if the file has some content

* Conditions are nested with “&&” (AND) operator, so the global expression
will be true only if ALL conditions are true.

Helloagain.sh example

~__»*What does this do?

#!/bin/bash - Uses the “=" (also “=="
- . operator to test Iif one string
a=$1 - is equal to other. Note that
- -eq is used for numerical
if ["$a" == "Johann"]:then evaluation and it will not
echo "Hello again Johann" work here. Also note the
else guotes around the variable
echo "Unrecognized name" “a” and the tested name
fi Johann

* This output text is written to
the terminal if the user write

Johann as command line
[+ manager@COGTrain22: ~/course_data/BASH_scripting @ = param eter_

:) (L1 in.sh And
et ner AR R * This output text is written if

- . [Hell in.sh Joh
Hello again Johann 7 SRR S the user enter any other (or
’ 51 none) command line
parameter

LoopsS

Aloop in a program is a part of code that is executed a number of times

BASH support several kind of loops with the commands while, until and
for.

We will see the for loop.

for ITEM in LIST
do

ACTION
done

The code between do and done will be executed as many times as the
elements contained in LIST.

These are called iterations.

The value of the variable ITEM will be an element of the list and will
change each iteration.

Loop.sh example

Create a variable called f that will contain an #!/bin/bash
element of the list “*.fastq” at each iteration. <+

—

- Note that “*" is a wildcard character that match any string for f in *.fastq
in filenames, so bash will expand this string to a list that //
contains all files in current (fastg_sets) directory which 4 do
names end with “.fastq”. Therefore, the for command will
not see any “*”, instead it will see a list of filenames.

echo $f
The do and done statements create a block of
commands that will be executed at each iteration: 1 &F
wC $
The indentation is not needed in BASH (not the
case for Python) but makes the script easier to done

read.

Finally, I like to point out that “word count” (wc)
command can read multiple files, so the one line
statement we -1 *.fastq will produce a similar
output.

Breakout rooms #2

* Exercise 8: Use your GetPairName.sh script as the base for a new one
that will check with an (if) that the input file has _1.fastqg (end=$
{filename: -8}) and only then print out the paired sample name.

* Exercise 9: Write a script called Loop2.sh to loop (for) through the
directory fastg_sets and copy (cp) the files to your current directory.

* Exercise 10: Modify your LoopZ2.sh script so that the files are renamed
from .fastq to .fq

* Exercise 11: Write a script that loops through the fastq_sets directory
(for) and if the file has _1.fq (end=${filename: -5}), it counts the number
of lines in the file (wc —I).

Sources

* Bash manpage (man bash)

e Builtin bash commands help
- help
- help test
- help for
—help if

 String manipulations: Advanced Bash-scripting guide (chapter 10):
https://tidp.org/LDP/abs/html/string-manipulation.html

* WC infopage (info wc).
e Life in general... well, a lot of stack-overflow threads.
* Test and error (mostly with quotations)

https://tldp.org/LDP/abs/html/string-manipulation.html

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22

