

Introduction to BASH
scripting

Josefina Campos (jocampos05@gmail.com)
Sol Haim (solhaim@gmail.com)

Tomas Poklepovich (tcaride@gmail.com)
Andrés Culasso (aculasso@gmail.com)

What is BASH?
● BASH stands for Bourne-Again Shell

– Bourne Shell was an improvement of
Thompson shell that was the default in UNIX

– GNU/Linux was created as a freeware version
of UNIX, so it has to have a replacement
(compatibility) for the shell → BASH

What is a shell?

Applications

Shell

Kernel

Hardware

● Kernel is the software that
interact with hardware
(CPU/GPU, memory, I/O,
etc.)

● The user interact with the
system mostly through the
Shell and Applications.
– As an example: the user tell

the shell that he/she wants to
run some program/application.

● There are both graphical
and text based shells.

What is a script?
● The script is a program.

– A program is a set of orders required to do a more or less complex task. You can think in it as a recipe
or an experiment protocol.

● All scripts are programs, but no all programs are scripts.
● Scripts allows the automation of repetitive tasks and the creation of pipelines.
● However some tasks require user interaction or checks and thus it cannot be easily

“scripted”.

BASH Script file
● Command interpreters

(as BASH) read the
scripts from a simple
text file.

● Some text editors
could highlight known
commands.

● To be executed the text
file require execution
permission.

#!/bin/bash

My first script

echo "Hello World!"

Shebang: states the
program for which the script
was written for

Hash: the line is a comment.
Used for telling you what the
script does or is doing.

The command that will print
Hello World! in the screen

Just to remember... file
permissions

● Read: the user
can see what is
inside the file

● Write: the user
can change (or
delete the file)

● Execute: the
user can
execute the file
or cd into the
directory

Dec. r w x
0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

$ chmod 755 file.sh

Permission for owner

Permission for group

Permission for others

$ chmod +x file.sh

$ chmod -r file.sh
?

Hands-on contents
• Variable setting and string manipulation

• Definition and use
• Concatenation
• Sub-strings by position
• Sub-strings by match

• Condition statement (flow control)
• Single condition
• Multiple conditions (Boolean operators)

• Loops
• For loop

Other options available at man bash and:
https://tldp.org/LDP/abs/html/string-manipulation.html

https://tldp.org/LDP/abs/html/string-manipulation.html

Variables
● The variables allows you to assign a name to a value

that can be referred later in the script. Also, it allows you
to pass information to a script so you don’t have to edit it
to change target file names or options

● The variable name can include any letter or number or _
● They are CASE SENSITIVE so myvar and MyVar are

different variables.
● The values are assigned with “=” sign
● After assignation they are accessed by using a $ before

the name

VariableScript.sh example
● Variable definition (without

“$”), no spaces after nor
before the = sing.

● Another variable that refers
to the first command line
argument ($1)

● Variable referred in a
command (with “$”)

#!/bin/bash

My script using variable

myname=$1

echo "Hello $myname"

HelloToYou.sh example

● Strings can be joined
(concatenated) just by
referring one after other.

● Note that the space within
$a and $b is also included
in $c

#!/bin/bash

a="Johann"

b="Mastropiero"

c="$a $b"

echo "Hello $c"

Substring.sh example
● The length of the string can be retrieved

with ${#var} (where “var” is the variable
name)

● A string can be truncated an arbitrary
number of characters from the beginning
(left to right) with ${var:L} (where “var” is
the variable name, and “L” is the length of
the truncated string)

● A part of a string can be retrieved using $
{var:S:L} (where “var is the variable
name, “S” the start position and “L” the
length of the substring)

● Finally a string can be truncated counting
from the last character (right to left) with $
{var: -L} (where “var” is the variable
name, and “L” the length of the substring;
beware of the space between “:” and “-”)

#!/bin/bash
filename="SRR19504912_1.fq"

Print string length
echo ${#filename}

Delete first 3 chars
beg=${filename:3}
echo $beg

Delete first 3 chars and
print 7 chars
mid=${filename:3:7}
echo $mid

Print last 5 chars
end=${filename: -5}
echo $end

GetPairName.sh example
● A substring can be

deleted by it match from
left to right with
${var#substring}

● Conversely, a substring
can be eleted by it match
from right to left with
${var%substring}

● In both cases “var” is the
variable name and
“substring” is the text to
match. Substring may
contain a wilcard “*” to
mach any text

#!/bin/bash

filename1="SRR19504912_1.fq"

filename2=${filename1%_1.fq}_2.fq

echo $filename2

sample1=sample${filename1#SRR}

echo $sample1

Breakout rooms #1
● Exercise 1: Write a SecondScript.sh that lists (ls) the files in your directory

● Exercise 2: Write a CountScript.sh that counts the lines (wc –l) in the file SRR19504912_1.fastq
present in /home/manager/course_data/NGS_file_formats_and_QC

● Exercise 3: Modify your SecondScript.sh so that it lists the files in any specified directory as the
input to the script.
The command line execution would look like:
SecondScript.sh /path/to/a/directory

● Exercise 4: Modify your CountScript.sh so that it counts the lines in any specified file that is the
input to the script.
The command line execution would look like:
CountScript.sh /path/to/a/file

● Exercise 5: Modify the HelloToYou.sh script so that it takes two arguments (your first name as $1
and surname as $2) from the command line.
Command line execution would be:
HelloToYou.sh Johann Mastropiero

● Exercise 6: Modify your CountScript.sh file so that it takes the pair of files SRR19504912_1.fastq
and SRR19504912_2.fastq (/home/manager/course_data/NGS_file_formats_and_QC) as input and
outputs the number of lines in each file.

● Exercise 7: Modify the GetPairName.sh script so the user can provide any file name as input to the
script.

Condition statement: if
● Allows to execute part of the script if a certain condition

is met. The condition is a Boolean expression (or zero
for false and non-zero for true). Complex expressions
could be created with Boolean operators as “OR”, “AND”
and “NOT” (“||”, “&&”, “!” respectively)

if [EXPRESSION]; then
ACTION
fi

if [EXPRESSION_1] && [EXPRESSION_2]; then
ACTION
fi

if [EXPRESSION_1] || [EXPRESSION_2]; then
ACTION
fi Hamlet in a script:

[2b] || [!2b]

I
FTrue False

Condition statement: if-else
● Works basically as if statement, but allows to execute

a different part of the script when the original condition
is not met.

if [EXPRESSION];then
ACTION_1
else
ACTION_2
fi

● Action_1 will be executed if EXPRESSION is true, but
Action_2 will be executed if EXPRESSION is false

● Off course, the expression could be more complex
with the use of AND, OR and NOT operators.

True False

IfStatement.sh example
● Assigns to variable n

whatever the users
writes

● Uses the numeric test
operator less than (-lt)
other operators are gt,
eq,le and ge for greater
than, equals to, less or
equals to and greater or
equals to respectively.

● The output text is only
written to the terminal if
the user enters a
number lower than 100

#!/bin/bash

#Get input number from user input
echo "Enter a number"
read n

#Check if input number less than 100
if [$n -lt 100]; then
 echo "$n is less than 100"
fi

CheckFile.sh example

● Tests
– -e checks if the file exists
– -r checks if the file is redeable
– -s checks if the file has some content

● Conditions are nested with “&&” (AND) operator, so the global expression
will be true only if ALL conditions are true.

#!/bin/bash

Set the path for our file

file="reference.fasta"

Check whether file exists, is readable and has data

if [[-e ${file}]] && [[-r ${file}]] && [[-s ${file}]];then
 # Execute this code if file meets those conditions
 echo "File is good"

fi

To see a complete list of
available tests, use man test
or help test commands.

Helloagain.sh example
● What does this do?
● Uses the “=” (also “==”)

operator to test if one string
is equal to other. Note that
-eq is used for numerical
evaluation and it will not
work here. Also note the
quotes around the variable
“a” and the tested name
Johann

● This output text is written to
the terminal if the user write
Johann as command line
parameter.

● This output text is written if
the user enter any other (or
none) command line
parameter

#!/bin/bash

a=$1

if ["$a" == "Johann"];then
 echo "Hello again Johann"
else
 echo "Unrecognized name"
fi

Loops
● A loop in a program is a part of code that is executed a number of times
● BASH support several kind of loops with the commands while, until and

for.
● We will see the for loop.

 for ITEM in LIST
 do
 ACTION
 done

● The code between do and done will be executed as many times as the
elements contained in LIST.

● These are called iterations.
● The value of the variable ITEM will be an element of the list and will

change each iteration.

Loop.sh example
● Create a variable called f that will contain an

element of the list “*.fastq” at each iteration.
– Note that “*” is a wildcard character that match any string

in filenames, so bash will expand this string to a list that
contains all files in current (fastq_sets) directory which
names end with “.fastq”. Therefore, the for command will
not see any “*”, instead it will see a list of filenames.

● The do and done statements create a block of
commands that will be executed at each iteration.

● The indentation is not needed in BASH (not the
case for Python) but makes the script easier to
read.

● Finally, I like to point out that “word count” (wc)
command can read multiple files, so the one line
statement wc -l *.fastq will produce a similar
output.

#!/bin/bash

for f in *.fastq

do

 echo $f

 wc -l $f

done

Breakout rooms #2
● Exercise 8: Use your GetPairName.sh script as the base for a new one

that will check with an (if) that the input file has _1.fastq (end=$
{filename: -8}) and only then print out the paired sample name.

● Exercise 9: Write a script called Loop2.sh to loop (for) through the
directory fastq_sets and copy (cp) the files to your current directory.

● Exercise 10: Modify your Loop2.sh script so that the files are renamed
from .fastq to .fq

● Exercise 11: Write a script that loops through the fastq_sets directory
(for) and if the file has _1.fq (end=${filename: -5}), it counts the number
of lines in the file (wc –l).

Sources
● Bash manpage (man bash)
● Builtin bash commands help

– help
– help test
– help for
– help if

● String manipulations: Advanced Bash-scripting guide (chapter 10):
https://tldp.org/LDP/abs/html/string-manipulation.html

● WC infopage (info wc).
● Life in general… well, a lot of stack-overflow threads.
● Test and error (mostly with quotations)

https://tldp.org/LDP/abs/html/string-manipulation.html

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22

