
Linux Scripting

Table of Contents

1. Introduction and aims
2. Getting started on the command line - Basic unix
3. Files and directories
4. Looking inside files
5. Searching the content of files using grep
6. Processing columns with awk
7. Loops
8. Bash scripts
9. UNIX quick reference guide

Introduction and Aims

Introducing Linux

Unix is the standard operating system on most large computer systems in sci-
entific research, in the same way that Microsoft Windows is the dominant oper-
ating system on desktop PCs.

Unix and MS Windows both perform the important job of managing the com-
puter’s hardware (screen, keyboard, mouse, hard disks, network connections,
etc…) on your behalf. They also provide you with tools to manage your files
and to run application software. They both offer a graphical user interface (desk-
top). These desktop interfaces look different between the operating systems, use
different names for things (e.g. directory versus folder) and have different images
but they mostly offer the same functionality.

Unix is a powerful, secure, robust and stable operating system which allows
dozens of people to run programs on the same computer at the same time. This
is why it is the preferred operating system for large-scale scientific computing.
It runs on all kinds of machines, from mobile phones (Android), desktop PCs…
to supercomputers.

Why Linux

Increasingly, the output of biological research exists as in silico data, usually
in the form of large text files. Unix is particularly suitable for working with
such files and has several powerful and flexible commands that can be used to
process and analyse this data. One advantage of learning Unix is that many of
the commands can be combined in an almost unlimited fashion. So if you can

1

learn just six Unix commands, you will be able to do a lot more than just six
things.

Unix contains hundreds of commands, but to conduct your analysis you will
probably only need 10 or so to achieve most of what you want to do. In this
course we will introduce you to some basic Unix commands followed by some
more advanced commands and provide examples of how they can be used in
bioinformatics analyses.

General points to consider

• Linux is pretty straightforward, but there are some general points to re-
member that will make your life easier:

– Linux is case sensitive - typing “ls” is not the same as typing “LS”.
– You need to put a space between a command and its argument - for

example, “more myfile” will show you the contents of the file called
myfile; “moremyfile” will just give you an error!

– Linux is not psychic! If you misspell the name of a command or the
name of a file, it will not understand you.

– Many of the commands are only a few letters long; this can be con-
fusing until you start to think logically about why those letters were
chosen
∗ ls for list, rm for remove and so on.

– Often when you have problems with Linux, it is due to a spelling
mistake, or perhaps you have omitted a space.

• If you want to know more about Linux and its commands there are plenty
of resources available that provide a more comprehensive guide, for exam-
ple:

– http://Linuxhelp.com
– https://learn.datacamp.com/

Some useful Linux commands

Command What it does
ls Lists the contents of the current directory
mkdir Makes a new directory
mv moves or renames a file
cp copies a file
rm removes a file
cat concatenates two or more files
less displays the contents of a file one page at a time
head displays the first ten lines of a file
tail displays the last ten lines of a file
cd change directory

2

Command What it does
pwd print the working directory
find find files matching an expression
grep search for a pattern within a file
wc count the lines, words, characters or bytes in a file
kill stop a process
jobs list the processes that are running

Tips to get you started

• read the text! It contain lots of hints that should help you to answer some
of the questions

• grey boxes contain instructions for running commands
– lines that start with a hash, ie “#” are a comment line - do not type

these out.
– lines that start with the following symbols should be typed out. Dif-

ferent programming languages have different symbols,
∗ ‘$’ : this is a shell prompt

· everything performed in this module is using the shell prompt
∗ ‘>’ : this is a R prompt

· this may appear in other modules
· note that you also see this on the shell prompt if you have

not completed a command correctly

∗ ‘»>’ : this is the python prompt
· you are not going to be using python here, but may choose to

learn it in your own time as it is a very versatile programming
language commonly used in bioinformatics

– note that you don’t actually type out the command prompt symbol,
i.e. ignore the “$” at the start of the line, just type out the command
after it.

�
Back
to
top

3

##
Get-
ting
started
on
the
com-
mand
line -
Ba-
sic
unix

4

###
In-
tro-
duc-
tion
to
the
ter-
mi-
nal -
Lets
get
started
with
the
com-
mand
line -
In
this
work-
shop,
we
will
be
us-
ing
Ubuntu,
a
ver-
sion
of
Linux
which
was
spe-
cially
de-
signed
for
PCs.

5

- We
will
use
a
ter-
mi-
nal
win-
dow
to
type
in
our
Linux
com-
mand
line.
-
This
is
simi-
lar
to
the
“Com-
mand
Prompt”
win-
dow
on
MS
Win-
dows
sys-
tems,
which
al-
lows
the
user
to
type
DOS
com-
mands
to
man-
age
files.
6

7

-
You
should
see
a
win-
dow
la-
belled
“Ter-
mi-
nal”
which
will
be
empty
ex-
cept
for a
’′𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑎𝑡𝑡ℎ𝑒𝑡𝑜𝑝𝑙𝑒𝑓𝑡.−
𝑇 ℎ𝑒′’
char-
ac-
ter
is
the
Linux
prompt,
simi-
lar
to
”C:”
in
DOS.
Note:
the
prompt
will
of-
ten
be
dif-
fer-
ent
on
dif-
fer-
ent
Linux
com-
put-
ers,
for
ex-
am-
ple
it
may
be
dis-
played
as a
‘%’
char-
ac-
ter.

8

- All
Linux
pro-
grams
may
be
run
by
typ-
ing
com-
mands
at
the
Linux
prompt
.𝑇 ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑙𝑖𝑛𝑒𝑡𝑒𝑙𝑙𝑠𝑡ℎ𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑤ℎ𝑎𝑡𝑡𝑜𝑑𝑜.−
𝑌 𝑜𝑢𝑐𝑎𝑛𝑡𝑦𝑝𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦𝑖𝑛𝑡𝑜𝑡ℎ𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑎𝑡𝑡ℎ𝑒′’
prompt.

“‘bash
#
your
first
com-
mand
–
move
to
the
work-
ing
di-
rec-
tory
to
get
started!
cd
/home/manager/Module_2_Linux_Scripting
“‘

9

- A
list
of
use-
ful
com-
mands
can
be
found
on a
pre-
vi-
ous
page.
-
Many
of
them
are
two-
or
three-
letter
ab-
bre-
via-
tions.
The
earli-
est
Linux
sys-
tems
(circa
1970)
only
had
slow
Tele-
type
ter-
mi-
nals,
so it
was
faster
to
type
‘rm’
to
re-
move
a
file
than
‘delete’
or
‘erase’.
This
terse-
ness
is a
fea-
ture
of
Linux
which
still
sur-
vives.

10

Command line arguments

• You may subtly alter these commands by specifying certain options when
typing in the command line.

• Typing any Linux command for example ls, mv or cd at the Linux prompt
with the appropriate variables such as files names or directories will result
in the tasks being performed on pressing the enter key.

• The ‘command’ is separated from the options and arguments by a space.

• Additional options and/or arguments can be added to the commands to
affect the way the command works.

• Options usually have one dash and a letter (e.g. -h) or two dashes and a
word (–help) with no space between the dash and the letter/word.

• Arguments are usually filenames or directories.
• For example, to get a list of files in the terminal you can use the ls com-

mand with no other options. This tells the computer you want a list of all
the files in the current directory. The same information is also displayed
in the file browser but with nice looking pictures.

• Lets try out some different examples of the “ls” command:

List the contents of a directory
$ ls

11

List the contents of a directory with extra information about the files
$ ls –l

List all contents including hidden files & directories
$ ls –al

List the contents of the directory called basic with extra information
$ ls –l basic

Suggested usage – this will be the most frequent command used as a bioinformatician!
$ ls –ltr

where:
–l gives the long format,
-t sort the output by time,
–r reverse sorts the output.

this will therefore provide a detailed list, with the most recent files at the bottom. This is really useful if you have a lot of files in the same directory

• By using the –l (lowercase L for “long”) option we can change the be-
haviour of the ls command. Instead of printing out a simple list, it will
print out additional information about each file. There is a space between
the command ls and the –l option. There is no space between the dash
and the letter l.

12

Permissions

• Every file has permissions which restrict what can be done with a file or
directory.

Permission What it does
Read (r) permission to read from a

file/directory
Write (w) permission to modify a file/directory
Execute (x) Tells the operating system that the

file contains code for the computer to
run, as opposed to a file of text which
you open in a text editor.

• The first set of permissions (characters 2,3,4) refer to what the owner of
the file can do

• the second set of permissions (5,6,7) refers to what members of the Linux
group can do

• the third set of permissions (8,9,10) refers to what everyone else can do.

�
Back
to
top

13

##
Files
and
Di-
rec-
to-
ries -
Di-
rec-
to-
ries
are
the
Linux
equiv-
a-
lent
of
fold-
ers
on a
PC
or
Mac.
-
They
are
or-
gan-
ised
in a
hier-
ar-
chy,
so
di-
rec-
to-
ries
can
have
sub-
directories
and
so
on. -
Di-
rec-
to-
ries
are
very
use-
ful
for
or-
gan-
ising
your
work
and
keep-
ing
your
ac-
count
tidy
- for
ex-
am-
ple,
if
you
have
more
than
one
project,
you
can
or-
gan-
ise
the
files
for
each
project
into
dif-
fer-
ent
di-
rec-
to-
ries
to
keep
them
sepa-
rate.
You
can
think
of
di-
rec-
to-
ries
as
rooms
in a
house.
You
can
only
be
in
one
room
(di-
rec-
tory)
at a
time.
When
you
are
in a
room
you
can
see
ev-
ery-
thing
in
that
room
eas-
ily.
To
see
things
in
other
rooms,
you
have
to
go
to
the
ap-
pro-
pri-
ate
door
and
crane
your
head
around.
Linux
works
in a
simi-
lar
man-
ner,
mov-
ing
from
di-
rec-
tory
to
di-
rec-
tory
to
ac-
cess
files.
-
The
loca-
tion
or
di-
rec-
tory
that
you
are
in is
re-
ferred
to
as
the
cur-
rent
work-
ing
di-
rec-
tory.

14

-
There-
fore,
if
there
is a
file
called
genome.seq
in
the
dna
di-
rec-
tory
its
loca-
tion
or
full
path-
name
can
be
ex-
pressed
as
/nfs/dna/genome.seq.

pwd - find where you are

• The command pwd stands for print working directory.
• A command (also known as a program) is something which tells the com-

puter to do something. Commands are therefore often the first thing that
you type into the terminal (although we’ll show you some advanced excep-
tions to this rule later).

• As described above, directories are arranged in a hierarchical structure. To
determine where you are in the hierarchy you can use the pwd command
to display the name of the current working directory. The current working
directory may be thought of as the directory you are in, i.e. your current
position in the file-system tree.

To find out where you are, type this into your terminal.

15

$ pwd

$ cd basic

$ pwd

• Remember that Unix is case sensitive, PWD is not the same as pwd.
• pwd will list each of the folders you would need to navigate through to get

from the root of the file system to your current directory.
– This is sometimes referred to as your ‘absolute path’ to distinguish

that it gives a complete route rather than a ‘relative path’ which tells
you how to get from one folder to another.

– More on that shortly …

cd - change current working directory

• The command cd stands for change directory.
• The cd command will change the current working directory to another, in

other words allow you to move up or down in the directory hierarchy.
• To move into the genome_1 directory , complete the following:

– Note, you’ll remember this more easily if you type this into the ter-
minal rather copying and pasting.

– Also remember that you can use tab completion to save typing all of
it.

Move into the genome_1 directory using the cd command
$ cd genome_1/

Use the pwd command to check you are in the right place
$ pwd

it is often useful to list the contents of your new location after moving
$ ls -lrt

• There are some short cuts for referring to directories:

Command What it means
. Current directory (one full stop)
.. Directory above (two full stops)
~ Home directory (tilda)
/ Root of the file system (like C: in Windows)

• Try the following commands, what do they do?

List contents of current directory

16

$ ls .

List the contents of directory above your current location
$ ls ..

list the contents of the home directory
$ ls ~

Tab completion - “make tab-it and hab-it”

• Typing out file names is really boring and you’re likely to make typos
which will at best make your command fail with a strange error and at
worst overwrite some of your carefully crafted analysis.

– Tab completion is a trick which normally reduces this risk
significantly.

• Instead of typing out ls genome_2/, try typing ls g and then press the tab
character (instead of Enter).

– Most of the rest of the folder name should just appear.
– As you have two folders with similar names, you will need to give

your terminal a bit of a hand to work out which one you want.
• Pressing the tab key twice will try and autocomplete what you’ve started

typing or give you a list of all possible completions.
– This saves a lot of typing and typos.

cp - copy a file

• The command cp stands for copy.
• The cp command will copy a file from one location to another and you

will end up with two copies of the file.

To copy the file genome_1.gff to a new file called genome_1.withseq use:
$ cp genome_1.gff genome_1.withseq.gff

Use ls to check the contents of the current directory for the copied file:
$ ls -lrt

mv - move a file

• The mv command stand for move.

17

• The mv command will move a file from one location to another. This
moves the file rather than copies it, therefore you end up with only one
file rather than two.

• When using the command, the path or pathname is used to tell Unix
where to find the file.

• You refer to files in other directories by using the list of hierarchical names
separated by slashes.

– For example, the file called bases in the directory genome has the
path genome/bases.

– If no path is specified, Unix assumes that the file is in the current
working directory.

To move the file genome_1.withseq.gff from the current directory to the directory above use:
$ mv genome_1.withseq.gff ..

Use the ls command to check the contents of the current directory and the directory above to see
that genome_1.withseq.gff has been moved.
$ ls –lrt
$ ls –lrt ../

you could also change directory to check the file moved
$ cd ../
$ ls -lrt

rm - delete a file

• The command rm stands for remove.
• The rm command will delete a file permanently from your computer so

take care!

To remove the copy of the genome_1 gff file, called genome_1.withseq.gff use:
$ rm genome_1.withseq.gff

Use ls to check the contents of the current directory for the copied file:
$ ls -lrt

• Linux as a general rule does exactly what you ask, and does not ask for
confirmation.

• Unfortunately there is no “recycle bin” on the command line to recover
the file from, so you have to be careful.

18

Exercises

• Many people panic when they are confronted with a Unix prompt! Don’t!
All the commands you need to solve these exercises are provided above
and don’t be afraid to make a mistake.

• If you get lost ask a demonstrator. If you are a person skilled at Unix, be
patient this is only a short exercise.

• To begin, open a terminal window and navigate to the basic directory
in the Unix_course directory (remember use the Unix command cd) and
then complete the exercise below.

1. Use the ls command to show the contents of the basic directory.
2. How many files are there in the genome_2 directory?
3. What is the largest file in the genome_2 directory?
4. Move into the genome_2 directory.
5. How many files are there in the fasta directory?
6. Copy the file genome_2.bed in the genome_2 directory into the annota-

tion subdirectory.
7. Move all the fasta files in the directory genome_2 to the fasta subdirectory.
8. How many files are there in the fasta directory?

�
Back
to
top

19

##
Look-
ing
in-
side
files
- A
com-
mon
task
is to
look
at
the
con-
tents
of a
file.
This
can
be
achieved
us-
ing
sev-
eral
dif-
fer-
ent
Unix
com-
mands,
less,
head
and
tail.
Let
us
con-
sider
some
ex-
am-
ples.

20

###
less -
The
less
com-
mand
dis-
plays
the
con-
tents
of a
spec-
ified
file
one
screen
at a
time.
- To
test
this
com-
mand,
open
a
ter-
mi-
nal
win-
dow
on
the
com-
puter,
navi-
gate
to
the
di-
rec-
tory
files
in
the
Unix_course
di-
rec-
tory
and
type
the
fol-
low-
ing
com-
mand
fol-
lowed
by
the
en-
ter
key:

21

bash
#
Use
the
less
command
to
open
a
gff
$
less
genome_1.gff
-
The
con-
tents
of
the
file
genome_1.gff
is
dis-
played
one
screen
at a
time,
to
view
the
next
screen
press
the
space-
bar.
- As
genome_1.gff
is a
large
file
this
will
take
a
while,
there-
fore
you
may
want
to
es-
cape
or
exit
from
this
com-
mand.
- To
do
this,
press
the
q
key,
this
kills
the
less
com-
mand
and
re-
turns
you
to
the
Unix
prompt.
- less
can
also
scroll
back-
wards
if
you
hit
the
b
key.
- An-
other
use-
ful
fea-
ture
is
the
slash
key,
/, to
search
for
an
ex-
pres-
sion
in
the
file.
- Try
it,
search
for
the
gene
with
lo-
cus
tag
t0038.
-
What
is
the
start
and
end
posi-
tion
of
this
gene?

22

head and tail

• Sometimes you may just want to view the text at the beginning or the
end of a file, without having to display all of the file.

– The head and tail commands can be used to do this.
• The head command displays the first ten lines of a file.

To look at the beginning of the file genome_1.gff file use:
$ head genome_1.gff

To look at the end of genome_1.gff use:
$ tail genome_1.gff

• The amount of the file that is displayed can be increased by adding extra
arguments.

– To increase the number of lines viewed from 10 to 25 add -n 25 to
the command:

To look at the last 25 lines of genome_1.gff use:
$ tail –n 25 genome_1.gff

• In this case you’ve given tail an argument in two parts.
– the -n says that you want to specify the number of lines to show and

the 25 bit tells it how many.
• Unlike earlier when we merged arguments like ls -lha together, it’s not a

good idea to merge multiple two part arguments together because other-
wise it is ambiguous which value goes with which argument.

23

– -n is such a common argument for tail and head that it even has a
shorthand: -n 25 and -25 mean the same thing.

Saving time

• Saving time while typing may not seem important, but the longer that you
spend in front of a computer, the happier you will be if you can reduce
the time you spend at the keyboard.

• pressing the up/down arrows will let you scroll through previous com-
mands entered.

• If you highlight some text, middle clicking on the mouse will paste it on
the command line.

• Tab completion doesn’t just work on filenames, it also works on commands.
– Try it by typing fin and pressing tab…

∗ fin
• Although tab completion works on commands and file names, unfortu-

nately it rarely works on options or other arguments.

Getting help: man , -h , –help

• There are a number of different ways you can be help with a command.
Not all of these work for each command you will encounter, however, they
are worth knowing and using to learn about new tools, and troubleshoot
using commands that may not initially work for you.

• For example, to get help using the tail command, we could use one of the
following:

I’m stuck – help!
$ man tail
Or
$ tail –h
Or
$ tail --help

• The prefix man will typically give extensive detail about the command
and its options, whereas –h and –help tend to give an abbreviated version.

• IMPORTANTLY, each will give an example command, or usage state-
ment.

• There are several other useful commands that can be used to manipulate
and summarise information inside files and we will introduce some of these
next, cat, sort, wc and uniq.

24

Writing to files

• So far we’ve been running commands and outputting the results into the
terminal. That’s obviously useful but what if you want to save the results
to another file?

Extract the first line of genome_1.gff and output to a new file
$ head -1 genome_1.gff > first_genome_1_line.txt

• It’s likely that nothing obvious will have happened….
• This is because the “>” character has redirected the output of the head

command. Instead of writing to the standard output (your terminal) it
sent the output into the file first_genome_1_line.txt.

• Note that tab completion works for genome_1.gff because it exists but
doesn’t work for first_genome_1_line.txt because it doesn’t exist yet.

cat

• cat is another way of reading files, but unlike less it just throws
the entire contents of the file onto your standard output. Try it on
first_genome_1_line.txt.

Read you new file using the cat command
$ cat first_genome_1_line.txt

we don’t actually need this file, so lets remove it
rm first_genome_1_line.txt

• The command cat can be used to join two or more files into a single file.
The order in which the files are joined is determined by the order in which
they appear in the command line. You can use cat and the “>” symbol
to join files together.

• Having looked at the beginning and end of the genome_1.gff file you
should notice that in the GFF file the annotation comes first, then the
DNA sequence at the end.

• We can recreate this file by using cat to join two separate files,
genome_1.noseq.gff and genome_1.fa, that contain the annotation and
DNA sequence, respectively for genome_1. To join together these files
use:

Join the two files using the cat command
$ cat genome_1.noseq.gff genome_1.fa > genome_1.concatenated.gff

25

lets check that the new file has been generated
$ ls -lrt

wc - counting

• The command wc counts lines (-l), words (-w) or characters (-c).
• There are two ways you could use it:

use the wc command on the file directly
$ wc -l genome_1.gff

use cat to open the file, and “pipe” the result to the wc command
$ cat genome_1.gff | wc -l

• Did you get the same answer?
• In the first example, you tell wc the file that you want it to review

(i.e. genome_1.gff) and pass the -l option to say that you’re only interested
in the number of lines.

• In the second example you use the | symbol which is also known as the
pipe symbol. This pipes the output of cat genome_1.gff into the input of
wc -l.

– This means that you can also use the same wc tool to count other
things.

For example to count the number of files that are listed by ls use:
$ ls | wc –l

You can connect as many commands as you want. For example:
$ ls | grep ".gff" | wc -l

sort - sorting values

• The sort command lets you sort the contents of the input.
• When you sort the input, lines with identical content end up next to each

other in the output. This is useful as the output can then be fed to the
uniq command (see below) to count the number of unique lines in the
input.

• First, navigate your way to the “genome_2” directory.

For example, to sort the contents of a BED file use:
$ sort genome_2.bed | head

look at the other end of the file using tail

26

$ sort genome_2.bed | tail

To sort the contents of a BED file on position, type the following command.
$ sort -k 2 -n genome_2.bed

• The sort command can sort by multiple columns e.g. 1st column and then
2nd column by specifying successive -k parameters in the command.

• Why not have a look at the manual for sort to see what these options do?
– Remember that you can type / followed by a search phrase, n to find

the next search hit, N to find the previous search hit and q to exit.

uniq - finding unique values

• The uniq command extracts unique lines from the input.
• It is usually used in combination with sort to count unique values in the

input.

To get the list of chromosomes in the genome_2 bed file use:
$ awk '{ print $1 }' genome_2.bed | sort | uniq

• How many chromosomes are there?

– You will learn more about the awk command later in this course.

• Warning: uniq is really stupid; it can only spot that two lines are the same
if they are right next to one another. Your therefore almost always want
to sort your input data before using uniq.

• Do you understand how this command is working? Why not try building
it up piece by piece to see what it does?

Lets see what happens when we build a command using pipes
$ awk '{ print $1 }' genome_2.bed | less
$ awk '{ print $1 }' genome_2.bed | sort | less
$ awk '{ print $1 }' genome_2.bed | sort | uniq | less

Exercises

• Open up a new terminal window, navigate to the files directory in the
Unix_course directory and complete the following exercise:

1. Use the head command to extract the first 500 lines of the file
genome_1.gff and store the output in a new file called genome_1.500.gff.

2. Use the wc command to count the number of lines in the genome_2.bed
file.

27

3. Use the sort command to sort the file genome_2.bed on chromosome and
then gene position.

4. Use the uniq command to count the number of features per chromosome
in the genome_2.bed file.
• Hint: use the man command to look at the options for the uniq

command. Or peruse the wc or grep manuals. There’s more than
one way to do it!

�
Back
to
top

28

##
Search-
ing
the
con-
tent
of
files
us-
ing
grep
- A
com-
mon
task
is
ex-
trac-
tion
of
in-
for-
ma-
tion
from
a
large
file
or
many
large
files.
-
This
is
achieved
us-
ing
the
Unix
com-
mand
grep.
This
stands
for
“Glob-
ally
search
for a
Reg-
ular
Ex-
pres-
sion
and
Print”.

29

“‘bash
#
First
we
need
to
go
to
the
cor-
rect
di-
rec-
tory
$ cd
/home/manager/Module_2_Linux_Scripting/grep
“‘

30

###
Sim-
ple
pat-
tern
match-
ing -
We
will
search
a
small
ex-
am-
ple
file
in
“BED”
for-
mat.
-
This
is a
tab
de-
lim-
ited
file
for-
mat,
which
can
con-
tain
10 or
more
columns,
al-
though
only
the
first
three
are
re-
quired.
-
The
file
for-
mat
is de-
scribed
in
full
at
http://genome.ucsc.edu/FAQ/FAQformat#format1
- We
will
use
columns
1 to
5 -
Se-
quence
name
-
Start
posi-
tion
(start-
ing
from
0
not
1) -
End
posi-
tion
(start-
ing
from
0
not
1) -
Fea-
ture
name
-
Score
(used
to
store
gene
ex-
pres-
sion
level
in
our
ex-
am-
ples)

31

“‘bash
#
Use
cat
to
view
the
file
con-
tents
$ cat
gene_expression.bed

32

“‘ -
This
is a
short
ex-
am-
ple
but
files
of
this
for-
mat
may
con-
tain
hun-
dreds
to
thou-
sands
of
lines,
mak-
ing
it
im-
prac-
tical
to
read
them
man-
u-
ally.

33

“‘bash
#
We
are
in-
ter-
ested
in
chro-
mo-
some
2 so
wish
to
find
all
lines
in-
volv-
ing
it
us-
ing
grep.
$
grep
chr2
gene_expression.bed

34

“‘ -
This
has
shown
us
all
lines
con-
tain-
ing
the
text
“chr2”.
- We
may
wish
to
re-
fine
our
search
fur-
ther.

35

“‘bash
#
We
can
search
the
out-
put
of
the
grep
search
us-
ing
a
pipe
$
grep
chr2
gene_expression.bed
|
grep
+

36

“‘ -
As
grep
re-
ports
matches
to a
string
any-
where
on a
line,
such
sim-
ple
searches
can
have
un-
de-
sired
con-
se-
quences.

37

“‘bash
#
We
will
mod-
ify
our
orig-
inal
search
slightly
to
find
all
data
on
chro-
mo-
some
1 $
grep
chr1
gene_expression.bed

38

“‘ -
You
should
no-
tice
that,
in
addi-
tion
to
lines
from
chro-
mo-
some
1,
grep
re-
ports
lines
from
chro-
mo-
some
10
also.
-
Sim-
i-
larly,
an-
no-
ta-
tions
can
be
in-
con-
sis-
tent,
lead-
ing
to
fur-
ther
prob-
lems
with
sim-
ple
searches.

39

“‘bash
#
Look
at
an-
other
bed
file
we
have
pro-
vides
$ cat
gene_expression_sneaky.bed
“‘ -
You
will
no-
tice
some
in-
con-
sis-
tency
in
col-
umn
4.

40

“‘bash
#
See
what
hap-
pens
when
we
grep
for
genes
on
chro-
mo-
some
1,
on
the
neg-
a-
tive
strand.
(Note,
we
put
the
mi-
nus
sign
in
quotes
to
stop
Unix
in-
ter-
pret-
ing
this
as
an
op-
tion
in
grep
$
grep
chr1
gene_expression_sneaky.bed
|
grep
“-”

41

“‘ -
You
will
no-
tice
that
grep
re-
ports
sev-
eral
lines
form
genes
which
aren’t
on
chro-
mo-
some
1. -
This
is
be-
cause
each
of
them
con-
tains
the
text
“chr1”
and
the
text
“-”
some-
where.
- We
need
a
way
to
re-
fine
our
searches
fur-
ther.

42

Regular expressions

• Regular expressions provide a way of defining more specific patterns to
match.

• We will concentrate on some of the most useful and commonly used regular
expressions.

• Firstly, we can specify a match only to text at the start of a line using the
“^” (carat) symbol.

Repeat the first part of our search but including ^. Note, to be safe, we will put the search term in quotes.
$ grep '^chr1' gene_expression_sneaky.bed

• We can now refine our search further to avoid the remaining genes not on
chromosome 1.

This can be done by searching for a tab character following the chromosome name. Tab is represented by ‘\t’. For reasons beyond the scope of this course,we must start the search term with a dollar symbol to recognise tab.

$ grep $'^chr1\t' gene_expression_sneaky.bed

• As expected, there are now three genes left, all on chromosome 1.
• We will now include the second part of our original grep to search for

genes only on the negative strand. However, we will modify this with a
regular expression to only find characters at the end of the line.

Searching for a string at the end of the line is done using a $ symbol at the end of the search term. In this case, we will backslash the - symbol for safety.
$ grep $'^chr1\t' gene_expression_sneaky.bed | grep '\-$'

• We now have only one gene reported and it is on chromosome 1 and on
the negative strand.

• Further, more complex examples of regular expressions and their use may
be found in the reference guide at the end of this chapter.

Useful grep command line options

• A common requirement is to count the number of matches to a search
term.

• This could be done by piping the output of grep into wc -l, but can be
done more succinctly using grep -c (c = count) option.

We will repeat a previous search but include the -c option to count matches rather than just returning them.
$ grep -c $'^chr1\t' gene_expression_sneaky.bed

• Another common requirement is to make searches case insensitive. By
default, grep is case sensitive so grepping for ‘acgt’ will not return hits to
‘ACGT’.

43

Consider the fasta file sequences.fasta.
$ cat sequences.fasta
A simple search for ACGT will not hit all relevant sequences.
$ grep ACGT sequences.fasta

• Therefore, we need to make the search case insensitive.

The -i option does this
$ grep -i ACGT sequences.fasta

• Another commonly used requirement from grep is to find the reverse of a
match, i.e. return all lines which do not match the search term.

The -v option does this
$ grep -v $'^chr1\t' gene_expression_sneaky.bed

Replacing matches to regular expressions

• In Unix, it is possible to replace every match to a character string or reg-
ular expression with something else using the command sed. This stands
for “stream editor”.

As an example, we wish to replace each incidence of the characters ‘chr’ at the beginning of the line in gene_expression.bed with ‘chromosome
$ sed 's/^chr/chromosome/' gene_expression.bed

• Note: this will output to the terminal window. The output can be redi-
rected to a new file using the “>” character.

For example:
$ sed '/^chr/chromosome/' gene_expression.bed > gene_expression_new.bed

�
Back
to
top

44

##
Pro-
cess-
ing
columns
with
awk
-
awk
is a
pro-
gram-
ming
lan-
guage
named
after
its
three
in-
ven-
tors:
Al-
fred
Aho,
Pe-
ter
Wein-
berger
and
Brian
Kernighan.
-
awk
is
pow-
erful
at
pro-
cess-
ing
files,
par-
ticu-
larly
col-
umn
based
files,
which
are
com-
mon-
place
in
bioin-
for-
mat-
ics
e.g. BED,
GFF
and
SAM
files.
- Al-
though
com-
plex
pro-
grams
can
be
writ-
ten
in
awk,
we
will
use
it di-
rectly
on
the
com-
mand
line.
- Be-
fore
we
be-
gin
we
need
to
change
di-
rec-
tory
to
the
cor-
rect
loca-
tion.

45

“‘bash
$ cd
~/Mod-
ule_2_Linux_Scripting/awk/

46

“‘ -
awk
reads
a
file
line
by
line,
split-
ting
each
line
into
columns.
-
This
makes
it
easy
to
ex-
tract
a
sin-
gle
col-
umn
or
mul-
tiple
columns.
- We
will
use
a
GFF
file
for
all
of
our
ex-
am-
ples.

47

“‘bash
#
First
we
will
view
the
GFF
file
to
look
at
its
struc-
ture.
$ cat
genes.gff
“‘

48

-
The
columns
in a
GFF
file
are
sepa-
rated
by
tabs
and
hav-
ing
the
fol-
low-
ing
mean-
ings
1.
Se-
quence
name
2.
Source
(the
name
of
the
pro-
gram
that
made
the
fea-
ture)
3.
Fea-
ture
- the
type
of
fea-
ture
e.g. gene
or
CDS
4.
Start
posi-
tion
5.
Stop
posi-
tion
6.
Score
7.
Strand
(+
or -)
8.
Frame
(0, 1
or 2)
9.
Op-
tional
ex-
tra
in-
for-
ma-
tion
in
the
form
key1=value1;
key2=
value2;
etc.

49

-
The
score,
strand
and
frame
may
set
to “.”
if
they
are
not
rele-
vant
to
the
fea-
ture.
-
The
final
col-
umn
may
or
may
not
be
present
and
can
con-
tain
any
num-
ber
of
key:value
pairs.

50

“‘bash
#
We
can
ask
awk
just
to
give
us
the
first
col-
umn
of a
file.
awk
calls
the
columns
$1,
$2
etc.
with
$0
rep-
re-
sent-
ing
the
full
line.
$
awk
-F” �”
‘{print
$1}’
genes.gff

51

“‘ -
A
little
ex-
pla-
na-
tion
is re-
quired:
-
The
op-
tion
-F” �”
is
needed
to
tell
awk
that
the
columns
are
tab
sepa-
rated.
- For
each
line
of
the
file,
awk
sim-
ply
does
what
is in-
side
the
curly
brack-
ets,
in
this
case,
sim-
ply
print
the
first
col-
umn.
- Try
to
mod-
ify
the
com-
mand
to
list
each
chro-
mo-
some
once
only.
(Hint:
you’ll
need
to
pipe
your
out-
put
into
a
Unix
com-
mand
we
saw
ear-
lier.)

52

Filtering input files

• Like grep, awk can be used to filter lines from a file.
• However, as awk is column based, it makes it easier to filter on the prop-

erties of the column of interest.

The filtering criteria can be added before the braces. For example, this will extract just chromosome 1 data from the file.
$ awk -F"\t" '$1=="chr1" { print $0 }' genes.gff

• There are two important things to note here:
– $1==“chr1” means that column 1 must exactly match “chr1”.
– The “(print $0}” part only happens when the first column is equal

to “chr1”
• In general, awk commands a made up of two parts:

– a pattern (e.g. $1==“chr1”)
– an action (e.g. “print $0”)

∗ The pattern defines which line the action is applied to.
• Actually, in this example, the action could be omitted as awk assumes you

want to print the whole line unless told otherwise.
• Similarly, if the pattern is omitted, awk assumes that the action should

be applied to every line, as in the first awk command we used.

In this example we will search for just the genes from chromosome 1.
$ awk -F"\t" '$1=="chr1" && $3=="gene"' genes.gff

• Similarly, “||” is used in awk to mean “or”.

In this example we will search for features which are on chromosome 1 or are repeats
$ awk -F"\t" '$1=="chr1" || $3=="repeat"' genes.gff

• So far, we have only filtered using strings. Numbers can also be used.

In this example we will search for genes on chromosome 1 which start before base position 1100
$ awk -F"\t" '$1=="chr1" && $3=="gene" && $4 < 1100' genes.gff

• If we do not specify a column, awk will match the entire line as it assumes
it is searching $0.

Note that -F"\t" can be omitted here. As we're searching the whole line, the column delimiter is not relevant.
$ awk '/repeat/' genes.gff

• Similarly to grep, via its -v option, awk can invert its match. In this case,
we use the “!~” operator to represent “does not match”.

Here we simply look for the inverse of the previous search.
$ awk ‘!/repeat/’ genes.gff

53

Sanity checking files

• Never ever trust the content of a bioinformatics file, even if you gener-
ated it.

• With the awk we have learnt so far, we can do some basic sanity checks
on a GFF file

One thing we may want to do is check that each gene has been assigned a strand. To do this, we need to check whether column 7 contains either a + or - symbol.
$ awk -F"\t" '$3=="gene" && !($7 == "+" || $7 == "-")' genes.gff

• Likewise, we may want to check whether the coordinates of all features
make sense.

To do this, we simply need to check that the end coordinate of the feature is not less than the start coordinate.
$ awk -F"\t" '$5 < $4' genes.gff

• A final simple sanity check is that each feature has either 8 or 9 columns.

We do this using a special variable in awk, “NF”, which is the number of columns in a line. Remember to distinguish this from “$NF”, which referes specifically to the final column. This search will give no output if all features pass.
$ awk -F"\t" 'NF<8 || NF>9' genes.gff

Changing the output

• In addition to filtering files, awk can be used to change the output.
• Potentially, every value in a column can be changed to something else.

As a simple example, we will change the value in the source column (column 2) to a new value for each line.
$ awk -F"\t" '{$2="new_source"; print $0}' genes.gff

• This is close to what is required but, if you look closely at the output, you
will notice that it is no longer tab separated.

• To fix this, we need to use another special variable called “OFS” (output
field separator).

This is achieved by adding "BEGIN{OFS="\t"}" to the code, as below. Before awk reads any lines of the file, it reads the BEGIN block of code, in this case, changing OFS to a tab character.
$ awk -F"\t" 'BEGIN{OFS="\t"} {$2="new_source"; print $0}' genes.gff

Exercises

1. Looking at the file grep/exercises.fasta, write a grep command to only
output the sequence names.
• How many sequences does this file contain?
• How many sequences contain unknown bases (denoted by “n” or

“N”)?

54

• Do any sequences have the same name? You don’t need to find the
repeated names, just how many names are repeated.

– Hint: You may need to look back at some earlier Unix commands.
2. Looking at the files awk/exercises.bed, find the names of the contigs in

the file.
• How many contigs are there?
• How many features are on the positive strand?
• And, how many on the negative strand?
• How many genes are there?
• How many genes have no strand assigned to them? (i.e. no final

column)
• How many genes have repeated names? You don’t need to find the

names.

�
Back
to
top

55

##
Loops
- It
is
com-
mon
in
bioin-
for-
mat-
ics
to
run
the
same
anal-
ysis
on
many
files.
-
Sup-
pose
we
have
a
script
which
runs
an
anal-
ysis
we
wish
to
run
on
100
data
files.
- It
is
both
te-
dious
and
er-
ror
type
the
same
com-
mand
100
times
so
in-
stead
we
use
a
loop.
-
There
are
sev-
eral
types
of
loop
used
by
Unix
but
we
will
con-
cen-
trate
on
two,
the
“for
loop”
and
the
“while
loop”.

56

bash
#
We
will
use
a
for
loop
to
run
wc
on
the
files
in
the
directory
loop_files/
$
for
filename
in
loop_files/*;
do
wc
${filename};
done
- No-
tice
the
syn-
tax
used.
-
The
$
sym-
bol
de-
notes
the
vari-
able
used
within
the
loop.
-
The
semi-
colon
is
used
to
sepa-
rate
the
parts
of
the
loop.
-
The
*
acts
as a
wild-
card
so
all
files
are
iter-
ated
over.

57

bash
#
Next
we
will
use
a
while
read
a
file
line-by-line,
and
only
print
lines
for
chromosome
1
and
on
the
sense
strand
$
while
read
-r
chr
start
end
name
strand;
do
\
if
[[
$chr
==
"01"
&&
$strand
==
"1"
]];
then
\
echo
$chr
$start
$end
$name
$strand;
\
fi;
\
done
<
loop_files/file.1
- let
us
break
this
while
loop
down:
-
“while
read
-r
chr
start
end
name
strand”
de-
fines
the
columns
that
will
be
passed
as
vari-
ables
to
the
next
part
of
the
com-
mand.
- We
could
call
these
any-
thing
we
like,
but
it
make
sense
to
given
the
names
that
re-
late
to
the
data
- “<
loop_files/file.1”
is
the
in-
put
file
that
will
be
read
line-
by-
line,
and
is
passed
into
the
com-
mand
us-
ing
the
“<”.
- the
while
loop
starts
with
the
“do”
and
fin-
ishes
with
the
“done”.
- in-
side
the
while
loop,
there
is
the
“if”
com-
mand
- if
the
con-
di-
tions
are
TRUE,
ie.,
the
chr
==1
AND
strand
==1,
then
we
“echo”
or
print
the
data
in
the
columns
chr,
start,
end,
name
&
strand.
These
were
set
as
vari-
ables
at
the
start
of
the
while
com-
mand
-
The
“if”
com-
mand
starts
with
“then”,
and
fin-
ishes
with
“fi”.

58

� Back to top

BASH scripts

• So far, we have run single commands in the terminal.
• However, it is often useful to run multiple commands to process data and

produce output.
• These commands can be put into a script which can be run on input data.
• This allows for reproducibility meaning the same analysis can be run on

multiple datasets in different locations.

Your first script

• It is traditional when learning a new programming language (in this case
BASH) to write a simple script which says “Hello world!”. We will do this
here.

In a terminal window, navigate to your home directory and create a directory called scripts
$ cd
$ mkdir scripts
$ cd scripts

Open a text editor to create your script. Do not use a word processor. An example is gedit. If you don’t have a favourite text editor already run this.
$ gedit &

In the editor window type ‘echo “Hello world!”’ and save the file with the name hello.sh.

• Congratulations! You have created your first script.
• We will now run the script.

First check to see whether the file in place then run it.
$ ls hello.sh
$ bash hello.sh

Setting up a generic directory for scripts

• It would be useful to be able to run scripts we’ve written from anywhere
on the filesystem without telling Unix where the script is or that it is a
BASH script.

• To tell Unix that a script is a BASH script, edit it so the first line reads:

59

#!/usr/bin/env bash

• Next we need to make the script executable. To do this, we use the Unix
command “chmod”

chmod changes the permissions of the file
$ chmod +x hello.sh

• The final thing we need to do is change our setup so Unix can find our
scripts without explicitly being told where they are.

• When a command is typed, Unix searches a list of directories looking for
it.

• This list is stored as an environmental variable known as the PATH.
• Some of the directories in the PATH are looked at for all users but others

can be set explicitly for an individual user.

First we want to check what our PATH currently is.
$ echo $PATH

• This has given us the list of directories currently used for commands.
• You will notice that it does not include your scripts directory.

We can modify the PATH environment variable in the current terminal
$ export PATH=$PATH:~/scripts

• If you want this change to be permanent i.e. so Unix finds your scripts
directory in a new terminal or after a fresh login, add the above line to a
file called ~/.bashrc.

• Each user has a .bashrc file. It stores environment variables and aliases
for the individual user account.

• On a Mac, the equivalent file is called ~/.bash_profile.
• This file is only usually looked at when logging in or opening a new ter-

minal.

To check the change has worked, open a new terminal and run your script with no location set.
$ hello.sh

• With this set up, to create a new script, you can copy and edit an existing
script or create a new one

$ cd ~/scripts
$ touch myscript.sh
$ chmod +x myscript.sh

• myscript.sh can now be edited using a text editor.

60

Getting command line options and adding output text

• Usually we want a script to read in options from the user, for example the
name of an input file.

• Inside the script, these parameters are given the names $1, $2, $3 etc.
• We have provided a simple example in which the user provides a file name

and a number.
• The script simply prints the file name on screen together with the top few

lines of the file (the number given as the second command line option).

We can view this example using the cat commend we’ve seen earlier
$ cd ~/Module_2_Linux_scripting/bash_scripts/scripts
$ cat options_example.sh

• Having looked at the script, run it to observe the output

$./options_example.sh test_file 2

• You will notice that, whilst the script works, is not very readable.
– It is better to replace $1 and $2 with meaningful variable names.

We have provided a second version of the script which is more readable
$ cat options_example2.sh

• We have set the variable filename to be $1 and the variable num-
ber_of_lines to be $2.

• This may seem unimportant with a simple script but, as you write more
complex scripts or adapt them to particular datasets, you will realise that
setting meaningful variable names saves a lot of time.

Exercises

1. Write a script which takes a file name from the user, if the file exists, print
a human readable message telling the user how many lines the file has.

2. Navigate to the base Module_2_Linux_scripting directory. Use a loop
to run the script written in exercise 1 on the files in the loop_files subdi-
rectory.

3. Write a script that takes a GFF filename as input. Make the script produce
a summary of various properties of the file.
• An example input file is provided called bash_scripts/exercise_3.gff.
• Use your imagination as to what you want to summarise.
• You may want to look back at the awk section of the manual for

inspiration.

61

�
Back
to
top
##
UNIX
quick
ref-
er-
ence
guide
1.
Look-
ing
at
files
and
mov-
ing
them
around

62

|
com-
mand
|
what
is it
do-
ing |
| —
| —
| |
pwd
|
Tell
me
which
di-
rec-
tory
I’m
in | |
ls |
What
else
is in
this
di-
rec-
tory
| | ls
.. |
What
is in
the
di-
rec-
tory
above
me |
| ls
foo/bar/
|
What
is in-
side
the
bar
di-
rec-
tory
which
is in-
side
the
foo/
di-
rec-
tory
| | ls
-lah
foo/
|
Give
the
the
de-
tails
(-l)
of
all
files
and
fold-
ers
(-a)
us-
ing
hu-
man
read-
able
file
sizes
(-h)
| |
cd
../..
|
Move
up
two
di-
rec-
to-
ries
| | cd
../foo/bar
|
Move
up
one
di-
rec-
tory
and
down
into
the
foo/bar/
sub-
di-
rec-
to-
ries
| |
cp -r
foo/
baz/
|
Copy
the
foo/
di-
rec-
tory
into
the
baz/
di-
rec-
tory
| |
mv
baz/foo
.. |
Move
the
foo
di-
rec-
tory
into
the
par-
ent
di-
rec-
tory
| |
rm
-r
../foo
| re-
move
the
di-
rec-
tory
called
foo/
from
the
par-
ent
di-
rec-
tory
| |
find
foo/
-
name
”*.gff”
|
find
all
the
files
with
a gff
ex-
ten-
sion
in
the
di-
rec-
tory
foo/
|

63

2. Looking in files

command what is it doing
less bar.bed scroll through bar.bed
grep chrom bar.bed | less -S Only look at lines in bar.bed which

have ‘chrom’ and don’t wrap lines
(-S)

head -20 bar.bed show me the first 20 lines of bar.bed
tail -20 bar.bed show me the last 20 lines
cat bar.bed show me all of the lines (bad for big

files)
wc -l bar.bed how many lines are there
sort -k 2 -n bar.bed sort by the second column in

numerical order
awk ‘{print $1}’ bar.bed | sort | uniq show the unique entries in the first

column

3. Grep

command what is it doing
grep foo bar.bed show me the lines in bar.bed with

‘foo’ in them
grep foo baz/* show me all examples of foo in the

files immediately within baz/
grep -r foo baz/ show me all examples of foo in baz/

and every subdirectory within it
grep ‘^foo’ bar.bed show me all of the lines begining with

foo
grep
‘foo′𝑏𝑎𝑟.𝑏𝑒𝑑|𝑠ℎ𝑜𝑤𝑚𝑒𝑎𝑙𝑙𝑜𝑓𝑡ℎ𝑒𝑙𝑖𝑛𝑒𝑠𝑒𝑛𝑑𝑖𝑛𝑔𝑖𝑛𝑓𝑜𝑜||𝑔𝑟𝑒𝑝−
𝑖′[𝑎𝑐𝑔𝑡]’ bar.bed

show me all of the lines which only
have the characters a,c,g and t
(ignoring their case)

grep -v foo bar.bed don’t show me any files with foo in
them

4. awk

command what is it doing
awk ‘{print $1}’ bar.bed just the first column

64

command what is it doing
awk ‘$4 ~ /^foo/’ bar.bed just rows where the 4th column starts

with foo
awk ‘$4 == “foo” {print $1}’ bar.bed the first column of rows where the

4th column is foo
awk -F” �” ‘{print $NF}’ bar.bed ignore spaces and print the last

column
awk -F” �” ‘{print $(NF-1)}’ bar.bed print the penultimate column
awk ‘{sum+=$2} END {print sum}’
bar.bed

print the sum of the second column

awk ‘/^foo/ {sum+=$2; count+=1}
END {print sum/count}’ bar.bed

print the average of the second value
of lines starting with foo

5. Piping, redirection and more advanced queries

grep -hv '^#' bar/*.gff | awk -F"\t" '{print $1}' | sort -u
grep => -h: don't print file names
-v: don't give me matching files
'^#': get rid of the header rows
'bar/*.gff': only look in the gff files in bar/
awk => print the first column
sort => -u: give me unique values

awk 'NR%10 == 0' bar.bed | head -20
awk => NR: is the row number
NR%10: is the modulo (remander) of dividing by 10
awk is therefore giving you every 10th line
head => only show the first 20

awk '{l=($3-$2+1)}; (l<300 && $2>200000 && $3<250000)' exercises.bed
Gives:
contig-2 201156 201359 gene-67 24.7 -
contig-4 245705 245932 gene-163 24.8 +
Finds all of the lines with features less than 300 bases long which start
after base 200,000 and end before base 250,000
Note that this appears to have the action before the pattern. This is
because we need to calculate the length of each feature before we use it
for filtering. If they were the other way around, you'd get the line
immediatly after the one you want:

65

awk '(l<300 && $2>200000 && $3<250000) {l=($3-$2+1); print $0}' exercises.bed
Gives:
contig-2 201156 201359 gene-67 24.7 -
contig-2 242625 243449 gene-68 46.5 +

6. A script

#!/usr/bin/env bash
set -e # stop running the script if there are errors
set -u # stop running the script if it uses an unknown variable
set -x # print every line before you run it (useful for debugging but annoying)

if [$# -ne 2]
then
echo "You must provide two files"
exit 1 # exit the programme (and number > 0 reports that this is a failure)
fi

file_one=$1
file_two=$2

if [! -f $file_one]
then
echo "The first file couldn't be found"
exit 2
fi

if [! -f $file_two]
then
echo "The second file couldn't be found"
exit 2
fi

Get the lines which aren't headers,
take the first column and return the unique values
number_of_contigs_in_one=$(awk '$1 !~ /^#/ {print $1}' $file_one | sort -u | wc -l)
number_of_contigs_in_two=$(awk '/^[^#]/ {print $1}' $file_two | sort -u | wc -l)

if [$number_of_contigs_in_one -gt $number_of_contigs_in_two]
then
echo "The first file had more unique contigs than the second"
exit
elif [$number_of_contigs_in_one -lt $number_of_contigs_in_two]
then
echo "The second file had more unique contigs"

66

exit
else
echo "The two files had the same number of contigs"
exit
fi

7. Pro tips
- Always have a quick look at files with less or head to double check their for-
mat. - Watch out for data in headers and make sure you don’t accidentally
include it in your output. - Watch out for spaces, especially if you’re using
awk - if in doubt, use -F” �”. - Build regular expressions slowly, bit by bit. -
If you did something smart but can’t remember what it was, try typing his-
tory. - man the_name_of_a_command often gives you help. - Google is
an excellent resource. Particularly prioritise results from stackoverflow.com,
seqanswers.com and biostars.org.

8. Build your commands slowly
- If you wanted me to calculate the sum of all of the scores for genes on contig-1
in a bed file, it’s best to run each of the following commands before moving onto
the next:

check which column is which and if there are any headers
head -20 bar.bed

have a look at the scores
head -20 bar.bed | awk '{print $5}'

check the contigs don't look wierd
awk '{print $1}' bar.bed | sort -u | less

check the genes don't look wierd
awk '{print $4}' bar.bed | sort -u | less

check that I can spot genes
awk '$4 ~ /gene-/' bar.bed | head -20

check I can find genes on contig-1
awk '($1 == "contig-1" && $4 ~ /gene-/)' bar.bed | head -20

check my algorithm works on a subset of the data
head -20 bar.bed | awk '($1 == "contig-1" && $4 ~ /gene-/) {sum+=$5}; END {print sum}'

apply the algorithm to all of the data
awk '($1 == "contig-1" && $4 ~ /gene-/) {sum+=$5}; END {print sum}' bar.bed

67

9. Which tool should I use? - You should probably use awk if: - your data
has columns. - you need to do simple maths.

• You should probably use grep if:
– you’re looking for files which contain some specific text (e.g. grep -r

foo bar/: look in all the files in bar/ for any with the word ‘foo’).
• You should probably use find if:

– you know something about a file (like it’s name or creation date) but
not where it is.

– you want a list of all the files in a subdirectory and its subdirectories
etc.

• You should write a script if:
– your code doesn’t fit easily on a single line.
– you are doing something you will want to repeat at a later date.
– you are doing something another person may wish to do.
– you are doing something sensitive (e.g. deleting a lot of files).
– you are doing some repeatedly.

� Back to top

License

This work is licensed under a Creative Commons Attribution 4.0 International
License.

68

	Linux Scripting
	Table of Contents
	Introduction and Aims
	Introducing Linux
	Why Linux
	General points to consider
	Some useful Linux commands
	Tips to get you started
	Command line arguments
	Permissions
	pwd - find where you are
	cd - change current working directory
	Tab completion - “make tab-it and hab-it”
	cp - copy a file
	mv - move a file
	rm - delete a file
	Exercises
	head and tail
	Saving time
	Getting help: man , -h , –help
	Writing to files
	cat
	wc - counting
	sort - sorting values
	uniq - finding unique values
	Exercises
	Regular expressions
	Useful grep command line options
	Replacing matches to regular expressions
	Filtering input files
	Sanity checking files
	Changing the output
	Exercises

	BASH scripts
	Your first script
	Setting up a generic directory for scripts
	Getting command line options and adding output text
	Exercises

	License

