

Variation

1 in every 1500 bases differs between individuals i.e. we are 99.93% identical in DNA sequence

- 96% identical to a chimp
- 60% of genes are shared with a banana

But 3,000,000,000 bases of DNA, so around 2 million differences between two people

Around 2 m per cell! Packaged in a ~1 μ m nucleus Akin to trying to fit 24 miles of cotton into a tennis ball!

30,000,000,000,000 cells in a human DNA is identical, but cells are specialised

Pluripotent stem cells

All cells derived from a single fertilised egg cell

Induced pluripotent stem cells (iPSC) – Yamanaka 2007

C

www.hipsci.org

HUMAN INDUCED PLURIPOTENT STEM CELL INITIATIVE

HIPSCI BRINGS TOGETHER DIVERSE CONSTITUENTS IN GENOMICS, PROTEOMICS, CELL BIOLOGY AND CLINICAL GENETICS TO CREATE A GLOBAL IPS CELL RESOURCE

CELL LINES AND DATA BROWSER

- Established in 2012 generate a large, well-characterized collection of iPS cells (>800x) for use in research.
- Two or three candidate iPSC cell lines from each donor (healthy or diseased), and initial characterisation of them

EVERYWHERE

Illustration by Chris Labrooy @nature

theguardian

'Of course it's not ethical': shock at geneedited baby claims

Chinese geneticist He Jiankui's claim to have altered embryos prompts outcry from scientists

▲ He Jiankui. Chinese authorities have ordered an investigation to verify his claims. Photograph: Mark Schiefelbein/AP

5'-AAACTTCAGGAGCGATATAGTTGGAGCCAGCTGGACTTTCCTTT-3'
3'-TTTGAAGTCCTCGCTATATCAACCTCGGTCGACCTGAAAGGAAA-5'

Alzheimer's disease

>500,000 diseaseassociated mutations

How do we understand these – one at a time is too slow Working towards understanding all 3,000,000,000 bases in genome

CRISPR as a drug

Ex vivo Cells are removed from a patient CRISPR/Cas9 is delivered to the cells in culture to produce the desired edit The edited cells are

returned to the patient

Sickle Cell Anaemia

1 base change in genome causes aggregation of haemoglobin Blockages (VOC) caused by sickled blood cells 5-15x per year – cause pain and strokes

Vertex and CRISPR Therapeutics Present New Data in 22 Patients With Greater Than 3 Months
Follow-Up Post-Treatment With Investigational CRISPR/Cas9 Gene-Editing Therapy, CTX001™ at
European Hematology Association Annual Meeting

- Beta thalassemia: All 15 patients were transfusion independent after CTX001 infusion -

- Sickle cell disease: All seven patients were free of vaso-occlusive crises after CTX001 infusion -

After treatment, 16/17 (94%) patients had no VOC in 12 months!

Cellular and Gene Editing Research

Sarah Cooper (sc34@sanger.ac.uk)

Michael Quail (mq1@sanger.ac.uk)

Daniel Gitterman (dg20@sanger.ac.uk)

Qianxin Wu (qw2@sanger.ac.uk)

HTSG / CellGen / CASM

Kenny Roberts

Tong Li

Kwasi Kwakwa Omer Bayraktar

Lucy Yates

Mats Nilsson

OpenTargets Neurodegeneration

Valentina Migliori (vm14@sanger.ac.uk)

Andrew Trinh (at29@sanger.ac.uk)

Filip Konopacki (fk@sanger.ac.uk)

Chun Hao Wong (cw24@sanger.ac.uk)

Gosia Trvnka

Sally Cowley (gosia@sanger.ac.uk) (sally.cowley@path.ox.ac.uk)(daniel.ebner@ndm.ox.ac.uk)

Daniel Ebner

Marta Perez-Alcantara (ma23@sanger.ac.uk) (sam.washer@path.ox.ac.uk)

Sam Washer (sw30@sanger.ac.uk)

Yixi Chen (vc4@sanger.ac.uk)

Ivan Gyulev (ig8@sanger.ac.uk)

Aleks Gontarczyk Michaela (aq33@sanger.ac.uk) Bruntraeger (mb27@sanger.ac.uk)

Sho Iwama (si9@sanger.ac.uk)

Leopold Parts Florian Merkle (lp2@sanger.ac.uk) (fm436@cam.ac.uk)

Caia Dominicus (cd8@sanger.ac.uk)

Diego Peretti (dp25@sanger.ac.uk)

Shikha Kataria (sk22@sanger.ac.uk) Claudia Feng Joseph McWilliam (cf14@sanger.ac.uk) (jm67@sanger.ac.uk)

